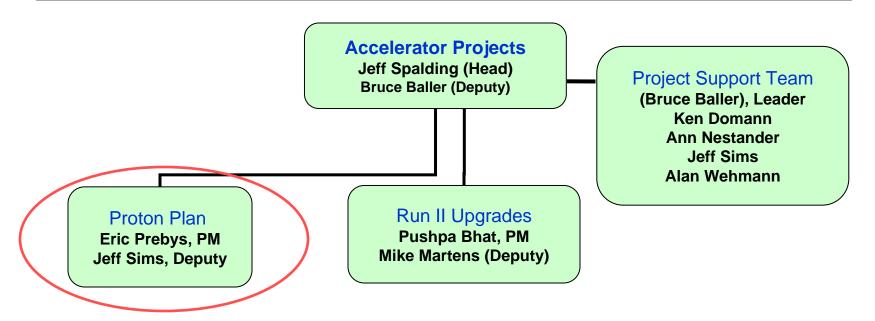


Proton Plan

Eric Prebys, FNAL Accelerator Division


Proton Plan Charge

- Develop a plan for a set of upgrades and operational improvements to maximize proton delivery to:
 - NuMI beamline (120 GeV from MI)
 - Booster Neutrino Beam (BNB) (8 GeV from Booster)
- (Original) Goal: complete the upgrades over the next 3 years, and operate through 2015 or beyond
 - This plan precedes the Proton Driver replacement of the existing Proton Source (Linac+Booster).
 - We are currently refining our plans in the wake of the BTeV cancellation.
- Develop the budget and timeline for these improvements
- Estimate projected proton delivery (PoT) to both beam lines

Management Organization

- Benefit from experiences with the Run II plan
- Project support team:
 - Resource-Loaded Schedule (MS Project) Domann
 - Accounting Cobra interface to Lab's system Nestander
 - Project management support Sims
 - Web and documentation support Wehmann

Context: Staged Approach to Neutrino Program

- Stage 0 (now):
 - Goal: deliver 2.5E13 protons per 2 second MI cycle to NuMI (~2E20 p/yr
 - Deliver 1-2E20 protons per year to Booster Neutrino Beam (currently MiniBooNE)
- Stage 1 (~2008):
 - A combination of Main Injector RF improvements and operational loading initiatives will increase the NuMI intensity to 4-5E13 protons per 2.2 second cycle (~3E20 p/yr)
 - This will increase by ~20% as protons currently used for pbar production become available
 - It is hoped we can continue to operate BNB at the 2E20 p/yr level during this period.
- Stage 2 (post-collider):
 - Consider (for example) using the Recycler as a preloader to the Main Injector and reducing the Main Injector cycle time
 - The exact scope and potential of these improvements are under study
- Stage 3 (proton driver)
 - Main Injector must accommodate 1.5E14 protons every 1.5 seconds
 - NuMI beamline and target must also be compatible with these intensities.

Limits to Proton Intensity

- Total proton rate from Proton Source (Linac+Booster):
 - Booster batch size
 - Typical ~5E12 protons/batch
 - Booster repetition rate
 - 15 Hz instantaneous
 - Currently 7.5Hz average (limited by injection bump and RF cooling)
 - Beam loss
 - Damage and/or activation of Booster components
 - Above ground radiation
- Total protons accelerated in Main Injector:
 - Maximum main injector load
 - Six "slots" for booster batches (3E13)
 - Up to ~11 with slip stacking (5.5E13)
 - RF stability limitations (currently ~4E13)
 - Cycle time:
 - 1.4s + loading time (1/15s per booster batch)

Operational Limit

Plan Strategy

See document: BEAMS-DOC-1441 (11/09/04) at http://beamsdocs.fnal.gov/cgi-bin/public/DocDB/DocumentDatabase

- Increase the proton delivery from the Booster (to both NuMI and BNB)
 - Increase acceptance by improving orbit control and beam quality
 - Increase maximum average Booster repetition rate
- Increase the beam intensity in the Main Injector for NuMI
 - Main Injector multi-batch operation
 - Slip stacking in Main Injector (probably requires RF upgrade)
- Improve operational reliability
 - Alleviate 7835 Problem
 - Linac quad supplies

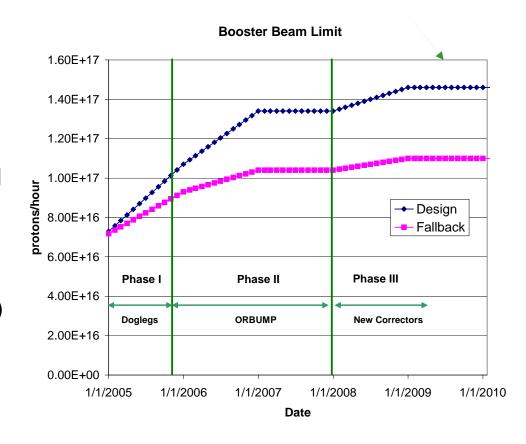
Current Budget Guidance

 After the cancellation of BTeV, we have the following budget guidance (M&S+SWF):

	FY05	FY06	FY07	FY08	Total
Present					
Guidance	7327	7845	6915	6116	28203

 This results in a scenario very close to the "delayed" scenario in the original document.

Booster Throughput


Major Improvements:

- New ORBUMP system (2005 shutdown)
- Relocate L13 dump to MI-8 line (2005 shutdown)
- New corrector system (2007)
- 19th and 20th cavities added

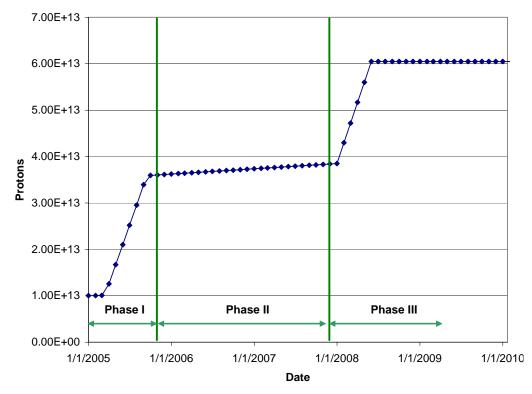
Performance

- Rep rate (after 2005)
 - 7.5 Hz -> 8-9 Hz
- Total protons (by end 2008)
 - 8E16 pph -> 1.45E17 pph
- Batch size (by end 2008):
 - 5E12 -> 5.5E12

Main Injector Loading

- Initial NuMI operation ("2+5"):
 - Two batches are slip stacked for antiproton production
 - Five more batches loaded for NuMI
 - All are accelerated together
- Ultimate NuMI operation ("2+9"):
 - Five batches will be loaded into the Main Injector, leaving one empty slot
 - Six more batches will be loaded and slipped with the first to make two for antiproton production and 9 for NuMI
 - This may exceed the capacity of the current RF system

Main Injector Loading (cont'd)


Major Improvements:

- Large Aperture Quads (2005 shutdown)
- Loss monitoring and collimations system (TBD)
- Multi-batch operation
- Dual PA upgrade (??)

Performance

- 2 (pbar) + 5 Numi 5E12batches @ 2 sec in 2005
- 2 (pbar) + 9 NuMI 5.5E12
- Batches @ 2.2 sec in 2008

Recent Scope Changes

- Criteria to be in plan (one of following):
 - Critical path to plan goals.
 - Expensive (>\$200K)
 - Requires significant coordination across departments
- Descoped:
 - Instrumentation upgrades
 - However, it is hoped we can pursue instrumentation upgrades within department budgets, now that the proton plan has absorbed some of the burden.
 - Booster solid state RF
- Added (proposed):
 - Booster dump relocation
 - New booster notcher
 - Main Injector injection kicker mods
 - Pbar extraction kicker mods
 - Stage II working group

Proton Plan Schedule - Level 3 Summary

WBS	Name	Start	Finish 200	4	2005		2006		2007		2008	20	09
				H2	H1	H2	H1	H2	H1 H	2	H1 H2	H1	H2
1	Proton Plan	Thu 9/30/04	Tue 9/30/08							Ŧ			
1.1	Linac Upgrades	Wed 12/15/04	Tue 1/2/07		V	-	-	-	\vee				
1.1.1	Linac PA Vulnerability	Wed 12/15/04	Mon 3/20/06		V	-	-						
1.1.2	Linac Quad Power Supplies	Mon 1/3/05	Tue 1/2/07		\vee	-		-	\checkmark				
1.1.3	Linac Instrumentation Upgrade (descoped)	Mon 5/2/05	Fri 9/30/05										
1.2	Booster Upgrades	Thu 9/30/04	Tue 10/16/07		_	-	-	-		4	/		
1.2.1	Determine Rep Rate Limit	Mon 5/2/05	Fri 7/29/05										
1.2.2	OrBump System	Thu 9/30/04	Fri 12/9/05			<u>-</u>	\checkmark						
1.2.3	Corrector System	Tue 1/4/05	Tue 10/16/07		∇	2				t	,		
1.2.4	30 Hz Harmonic	Mon 1/3/05	Tue 10/3/06		\vee		-						
1.2.5	Gamma-t System	Mon 5/2/05	Fri 9/30/05			<u> </u>							
1.2.6	Alignment Improvements	Mon 5/2/05	Fri 9/29/06		١.	<u>-</u>							
1.2.7	Drift Tube Cooling	Tue 1/4/05	Mon 11/14/05		\vee	Ħ.							
1.2.8	Booster RF Cavity #20	Mon 10/3/05	Wed 9/27/06			20	<u> </u>						
1.2.9	Booster Solid State RF Pas (descoped)	Fri 4/1/05	Fri 4/1/05			À.							
1.2.10	Booster Instrumentation Upgrade (descoped)	Mon 5/2/05	Fri 9/28/07			<u>-</u>				÷			
1.2.11	Booster Dump Relocation	Fri 4/1/05	Mon 11/21/05				$\overline{}$						
1.2.12	Booster Chopper	Mon 5/2/05	Fri 4/28/06					1					
1.3	Main Injector Upgrades	Thu 9/30/04	Tue 7/1/08		-	-	-	-		÷	$\overline{}$		
1.3.1	Large Aperture Quads	Thu 9/30/04	Thu 12/1/05		_	-	$\overline{}$						
1.3.2	Main Injector Collimation System	Tue 2/1/05	Mon 12/4/06		V	-		-	V				
1.3.3	NuMI Multibatch Operation	Mon 2/7/05	Tue 1/2/07			-			\checkmark				
1.3.4	Main Injector RF Upgrade	Tue 3/1/05	Tue 7/1/08			 		-		+	\vee		
1.3.5	MI Instrumentation Upgrades (descoped)	Wed 6/1/05	Mon 11/7/05			_							
1.4	Management	Mon 5/2/05	Tue 9/30/08			/		-		+		V	
1.5	Proton Study Group	Fri 4/1/05	Fri 3/31/06			_							

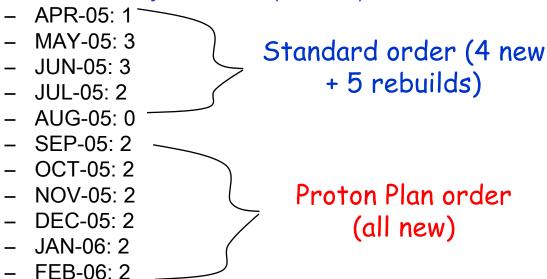
All Milestones

WBS	Name	Finish 2004			2005		2006	3	2007		2008		2009
				H2	H1	H2	H1	H2	H1 I	H2 H	11	H2	H1
1.1.1.1.2	Linac Task Force Phase 1 Report Issued	Mon 2/14/05				2/14							
1.3.4.1.6	Review MI RF Upgrade Prototype Test (Internal)	Thu 5/26/05					5/26						
1.3.2.1.2.2	Review Concept for MI-8 Collimation System	Tue 5/31/05					5/31						
1.5.2	Submit Preliminary Proton Study Group Report	Wed 6/1/05					6/1						
1.1.1.1.4	Linac Task Force Phase 2 Report Issued	Thu 6/30/05					6/30						
1.1.2.1.5	Linac Quad Power Supplies Design & Dwgs Complete	Fri 7/1/05					7/1						
1,2,2,1,2,6	OrBump Magnets Ready for Install on Girder	Fri 7/1/05											
1.2.2.1.3.4	OrBump Stripline Assy Complete	Mon 8/1/05											
1.2.2.1.4.5	OrBump Girder Assy Complete	Tue 8/9/05											
1.2.2.2.10	OrBump Power Supply Ready for Installation	Fri 9/30/05		1			-	9/30					
1.2.4.1.1	30 Hz Harmonic Project Decision	Mon 10/31/05		1			\$2₽	10/31					
1.4.5	Start 2005 Shutdown	Tue 11/1/05		1			S ₁	11/1					
1.5.3	Submit Final Proton Study Group Report	Tue 11/1/05		1			C3	11/1					
1.3.2.1.2.7	MI-8 Collimators Installation Complete	Mon 11/7/05		1				11/7					
1.3.3.1.3.1.4	Barrier Bucket Cavity Installation Complete	Mon 11/14/05		1				11/14					
1.2.11.3.10	Booster Dump Relocation Installation Complete	Tue 11/15/05		1				11/15					
1.3.1.1.7.5	Large Aperture Quad P.S. Installation Complete	Mon 11/21/05		1				11/21					
1.3.2.1.3.2	Review Concept for MI Collimation System	Mon 11/28/05		1				11/28					
1.2.3.3.3	Corrector PS Design Complete	Tue 11/29/05		1				11/29					
1.3.1.1.6.3	Large Aperture Quads Align/Install Complete	Thu 12/1/05		1				12/1					
1.2.2.1.6.6	OrBump System Installation Complete	Fri 12/9/05		1				12/9					
1.4.6	Finish 2005 Shutdown	Tue 1/3/06		1				1/3					
1.3.4.1.5	Review MI RF Upgrade Plan	Thu 2/2/06		1			E	2/2					
1.2.3.1.5	Corrector Prototype Magnet Complete	Mon 2/20/06		1			E	2/20					
1.1.2.2.2.5	Linac Quad Tank #1 Commissioning Complete	Tue 3/14/06					1	3/14					
1.1.1.1.6	Linac Task Force Complete	Mon 3/20/06						3/2					
1.2.8.1.3.4	RF Cavity #20 Misc Control Modules Ready for Installation	Fri 5/5/06		1				5	/5				
1.4.7	Start 2006 Shutdown	Mon 8/7/06		1					8/7				
1.2.8.1.4.5	RF Cavity #20 Solid State Driver Amplifier Ready for Installation	Mon 8/21/06		1					8/21				
1.2.8.1.1.4	RF Cavity #20 Ferrite Bias Supply Ready for Installation	Wed 9/13/06		1									
1.2.8.1.2.5	RF Cavity #20 Misc Control Modules Ready for Installation	Wed 9/13/06		1					9/13				
1.3.2.1.3.7	MI Collimation System Install/Align Complete	Wed 9/20/06		1					9/20				
1.2.8.1.7	RF Cavity#20 Installation Complete	Wed 9/27/06		1					9/27				
1.2.4.2.4	30Hz Installation Complete	Tue 10/3/06		1					10/3				
1.4.8	Finish 2006 Shutdown	Tue 10/3/06		1				—	10/3				
1,3,4,2,7	DOE Approve MIE Line Item Package	Mon 10/30/06		1					10/3	0			
1,3,2,1,4	Main Injector Loss Mitigation Complete	Mon 12/4/06		1					12/	4			
1,1,2,2,3,4	Linac Quad Installation Complete	Tue 1/2/07		1					D 1	/2			
1,2,3,4,5	Corrector PS Fabrication Complete	Tue 1/30/07		1						1/30			
1,2,3,2,8	Corrector Magnets Ready for Installation	Thu 6/21/07								6/2	21		
1.4.9	Start 2007 Shutdown	Mon 8/6/07		1							3/6		

Main Injector RF (1.03.04)

- The Main Injector Upgrade path remains the single largest uncertainty in the Proton Plan
 - Might be possible to reach intensities of the current Plan without upgrades of any kind.
 - Represents ~half the budget!!!
- Towards a decision
 - Proceed with two/PA prototype
 - Proceed with systematic studies in the Main Injector
 - Organize a workshop this summer
 - Will consider the following
 - Potential of feed forward system
 - Potential and concerns with two PA solution
 - New RF system proposals.
 - Will coordinate needs of current plan, Stage II Plan, and Proton Driver
 - Generate a perfomance/price table
 - Goal: reach a decision for Stage I by end of FY05

200 MHz Power Tube (7835) Situation



- The 7835's have been a historical weak spot in the complex
 - Original technology
 - Made by one company (Burle) which has had major quality control issues
 - Often been forced to borrow spares from ANL, LANL, and BNL to keep program going.
- The Proton Plan includes a working group to evaluate the 7835 situation
 - Short term
 - Maximize delivery of tubes to provide a two year supply of spares by end of 2006
 - Determined best way was a single, large order
 - Longer term
 - Generate a plan should the supply of 7835's cease
 - Build them ourselves?
 - New tube?
 - Multibeam 200 MHz klystron?
 - New low energy linac?
 - These solutions will be beyond the scope of this plan, but we want to have them in place by 7/1/05

Recent Developments with Burle

- Burle has been sold!!!!
 - Buyer still confidential, but "foreign", so must be approved by the government
 - Rumored to "sort of" have "something to do" with "tubes" already
 - might mean test tubes, tube socks, tube tops, etc.
 - Must continue to support coaxitron for the Navy until ~2020
 - In light of that, it is claimed that we are still profitable.
 - We will keep our fingers crossed.
- Present spares: 4 (+1 high hour tube)
- Current delivery schedule (21 total):

Major Projects for 2005 Shutdown

Linac

New pulsed power supplies for one tank

Booster

- New injection bump (ORBUMP) system
- Relocate Long 13 dump to MI-8 line

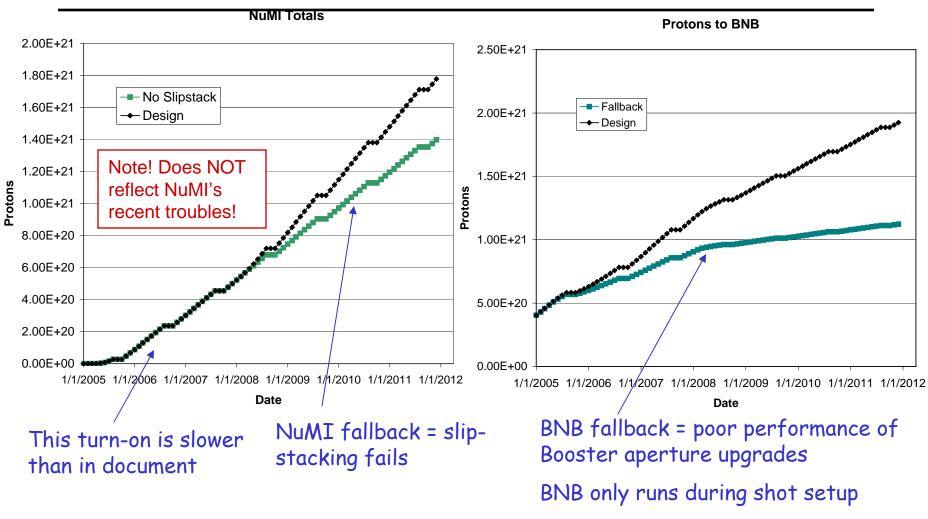
Main Injector

Install seven large aperture quads

Proton Projections

- Phases of Operation
 - Phase I (now)
 - Booster lattice distortions ameliorated
 - Booster limited to 7.5Hz total repetition rate
 - Main Injector limited to 4E13 protons (2+5 operation)
 - Phase II (after 2005 shutdown)
 - Injection bump (ORBUMP) replaced
 - Drift tube cooling in Booster RF cooling finished
 - Booster capable of 8-9Hz operation
 - MI still limited to 2+5 operation
 - Phase III (after 2007 shutdown)
 - MI RF upgrade complete
 - 2+9 operation to NuMI

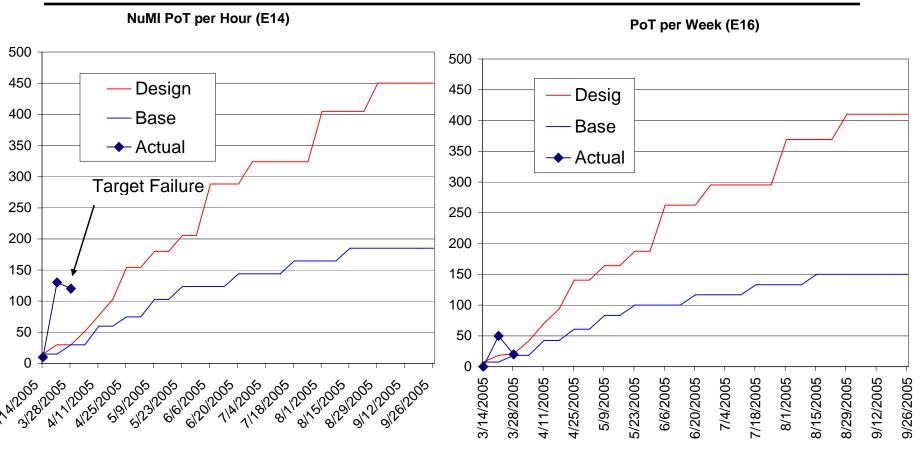
"Design" PoT from the document



	Booster Batch Size	Main Injector Load	Cycle Time	MI Intensity	Booster Rate*	Total Proton Rate		e at end of ase				
		(AP + NuMI)	(sec)	(protons)	(Hz)	(p/hr)	NuMI	BNB				
		Actual Operation										
July, 04	5.0E+12	1+0	2.0	0.5E+13	5.1	0.8E+17	0	3.3E+20				
Proton Plan												
Phase I	5.10E+12	2+1→2+5	2.0	3.6E+13	6.3	1.0E+17	2.0E+20	1.5E+20				
Phase II	5.3E+12	2+5	2.0	3.7E+13	7.5	1.2E+17	2.2E+20	2.8E+20				
Phase III	5.50E+12	2+9	2.2	6.0E+13	8.3	1.5E+17	3.4E+20	2.2E+20				
Beyond Scope of Present Plan												
11 Hz	5.50E+12	2+9	2.2	6.1E+13	11.0	2.0E+17	3.4E+20	5.0E+20				

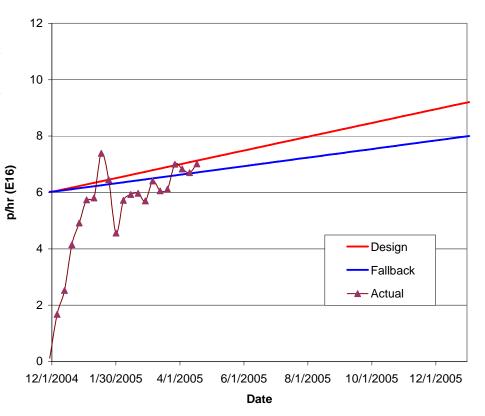
Each phase evaluated ~one year after associated improvements complete

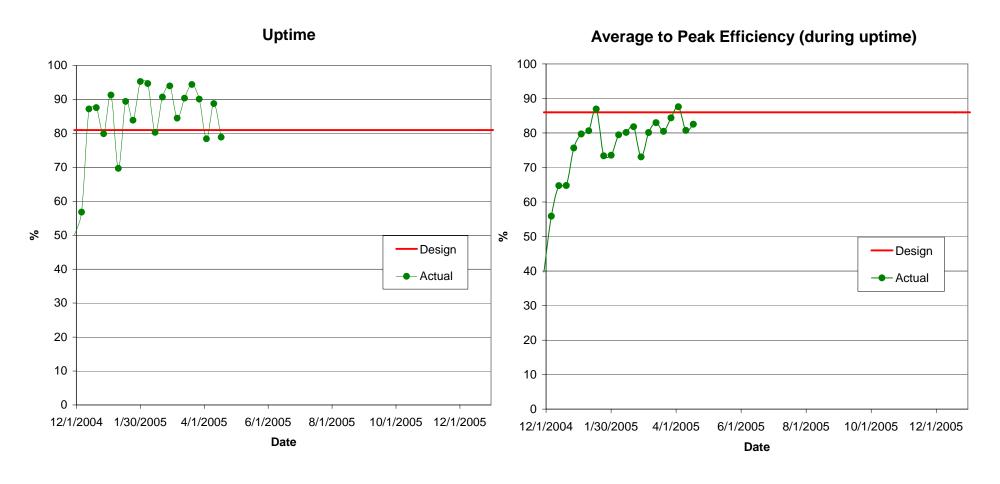
Long Term Projections


How are we doing so far?

- In light of the NuMI target failure, it's not meaningful to analyze separate NuMI and BNB progress separately.
- After summarizing initial NuMI performance, we will concentrate on total proton delivery:
 - Hourly rates: compare actual total rate to pbar+BNB+NuMI projections.
 - Integrated total: compare MiniBooNE actual to BNB+NuMI projections.
- Except for shutdown dates, these have not changed for 2005 since the November document.

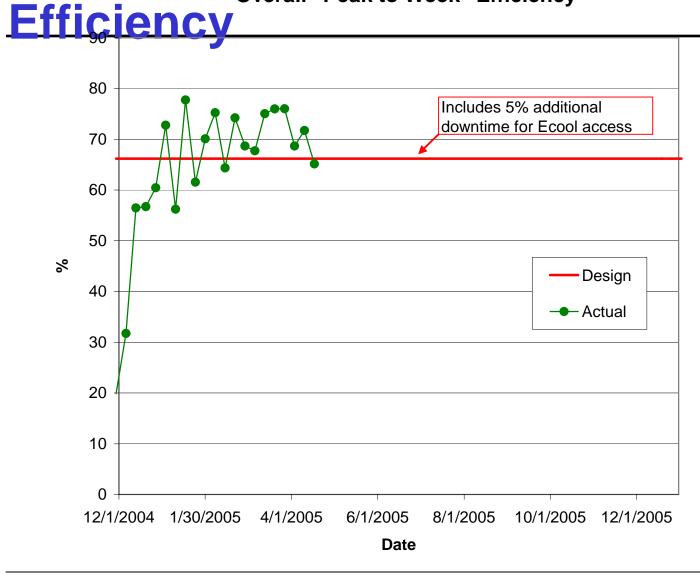
Initial NuMI Progress


Hourly Proton Rate


12 Improved cogging stability 10 8 p/hr (E16) Design Fallback --- Actual 4 2 12/1/2004 1/30/2005 4/1/2005 6/1/2005 8/1/2005 10/1/2005 12/1/2005 **Date**

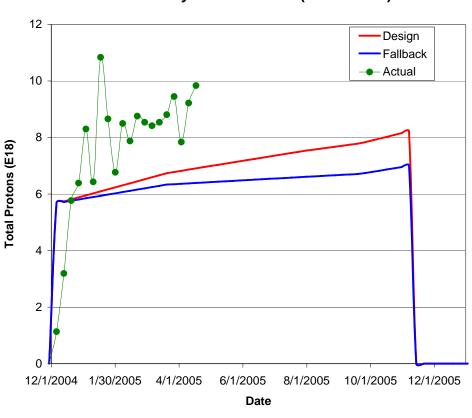
Average Hourly Rate (BNB+NuMI+pbar, while up)

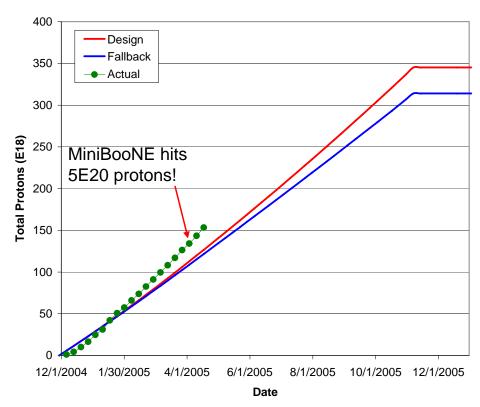
Efficiencies



Overall "Peak to Week"

Overall "Peak to Week" Efficiency




Integrated Delivery (BNB)

Weekly Proton Totals (BNB+NuMI)

Cumulative Proton Totals (BNB+NuMI)

After the Collider

- A number of suggestions have been made for ways to maximize proton output after Tevatron operation ceases:
 - Stage II in my earlier slide
- While these are beyond the scope of the present plan, we have begun a working group (WBS 1.5) to investigate them and present a report to the Division Head on June 1.

Summary

- The Proton Plan encompasses accelerator improvements to maximize protons to NuMI and the 8 GeV line over the next 10 years
- The implementation of the Plan will provide
 - ~7E16 p/hr to NuMI (~3E20 p/yr)
 - Up to ~4E16 p/hr (1-2E20 p/yr) for the 8 GeV line
- We are studying concepts for further improvements in the post collider era (for example using the Recycler as a preloader)
- We are working diligently toward a properly baselined, resource loaded project and schedule.