

Beam Delivery and Out of Time Extinction in the Mu2e Experiment at Fermilab

- Eric Prebys
- Fermilab/UC Davis
- 3 August 2017

Review: All the Accelerator Physics U Need 2 Know

• We can describe (strongly focused) particle motion in terms of initial conditions and a "beta function" β (s), which is only a function of location along the nominal path, and follows the periodicity of the machine.

- In other words, particles undergo "pseudo-harmonic" motion about the nominal trajectory, with a variable wavelength and amplitude.
- Note: β has units of [length], so the amplitude has units of [length]^{1/2}

Experimental Technique and Beam Needs

- The general technique is to use protons to make pions, which quickly decay to muons, which are captured on an Aluminum target.
- Previous experiments were rate-limited by the need to gate off after *individual* protons to eliminate prompt backgrounds, which predominantly come from radiative pion capture.
- Mu2e will get around this by using a *bunched* beam of protons, and then waiting for the pions to decay before opening the live window.

• This will allow the experiment to achieve a single event sensitivity that is a *four order of magnitude* improvement of the previous best measurement.

3

🛠 Fermilab

A Brief History of Fermilab

Trivia: original Main Ring was the first "separated function" synchrotron

- 1968: construction begins
- 1972: first beams from Main Ring
 - 200→400 GeV proton beams to fixed targets
- Highest energy lab for next 36 years!
 ~1985:
 - "Tevatron": first superconducting synchrotron shares tunnel with Main Ring
 - 900GeV x 900 GeV p-pBar collisions
 - Highest energy collider for 23 years.
- 1997: Major upgrade
 - Main Injector replaces Main Ring
 -> more intensity
 - 980 GeV x 980 GeV p-pBar collisions
 - Intense neutrino program
- 2011: Tevatron permanently turned off after the LHC came full online.
- So what is the lab doing now?

Fermilab Complex Today

🗕 🛟 Fermilab

5

The Challenge of Producing the Mu2e Beam

- All protons at Fermilab come from the Linac/Booster system.
 - Only "original" accelerators at the lab
 - First half of linac
 - Most of Booster
 - The Booster magnets operate in a 15 Hz offset resonant circuit, which
 - Sets a fundamental clock for all all accelerator sequencing
 - 1/15 second = 1 "tick"
 - Sets a fundamental "batch" of protons
 - 1.6 µsec long
 - Up to 5x10¹² protons
- Because the Booster magnets have no flat top, it cannot produce the beam structure required by the Mu2e Experiment.
 - This is why the experiment (then called MECO) was originally proposed for Brookhaven
- Luckily for us, when the Tevatron shut down in 2011, it freed up some equipment, specifically...
 Specifically...

August 3, 2017

Reduce, Reuse, Recycle...

Accumulator (8 GeV) Debuncher (8 GeV) Linac Booster B GeV Main Injector 150 GeV F0 Recycler 8 GeV F0 B0 Detector and Low Beta

- The Recycler
 - 8 GeV storage ring made of permanent magnets
 - Originally used to store antiprotons for the Tevatron
 - Now used for
 - pre-stacking protons for NuMI beam
 - Bunching each 1.6 μsec booster batches into 4 2.5 MHz bunches with ${\sim}1x10^{12}$ protons each for g-2 and Mu2e

- The Debuncher Ring
 - Together with the Accumulator, it was originally used to collect and store Antiprotons for the Tevatron
 - Now:
 - Used to temporally separate 3.1 GeV/c muons and protons for the g-2 Experiment
 - Future:
 - Used to circulate and slow extract beam for Mu2e

Mu2e Proton Delivery

- Two Booster "batches" are injected into the Recycler (8 GeV storage ring). Each is:
 - 4x10¹² protons
 - 1.7 μsec long
 - These are divided into 8 bunches of 10¹² each
 - The bunches are extracted one at a time to the Delivery Ring
 - Period = 1.7 μsec
 - As the bunch circulates, it is resonantly extracted to produce the desired beam structure.
 - Bunches of ~3x10⁷ protons each
 - Separated by 1.7 μsec

August 3, 2017

Rebunching in the Recycler*

*Data, presented by I. Kourbanis

9

August 3, 2017

M4 Beamline Design Overview*

Common Section:

- g-2 operation
 - Transport 3.1 GeV/c muons from DR to g-2 ring
- Mu2e operation
 - Transport 8 GeV protons to Mu2e

Horizontal Bend Section:

 Left bend section uses 4 SDFW and 2 SDF dipoles to bend beam 41° to the mu2e target.

Extinction Section:

- Out-of-time to in-time particle ratio < 10⁻¹⁰
- At AC dipole location:
 - Large $\beta_x\,$ to maximize the kickers effect .
 - Small β_y allow small kicker vertical gap.
 - At collimator: 90° of phase between up & down stream collimator & kicker. Small β_x at downstream collimator.

Final Focus Section:

- Brings beam to required spot size at target. (2x2 mm²)
- 2 Vertical dipoles bend the beam down to the target (2x1.375°)
- FF magnets are installed on a 1.375° vertical slope.

*D. Still

August 3, 2017

more about this shortly

Understanding Resonant Extraction

- Extracting all the beam at once is easy, but we want to extract it slowly over ~35 ms (~35,000 revolutions)
- Use nonlinear (sextupole) magnets to drive a harmonic instability
- Extract unstable beam as it propagates outward
 - Standard technique in accelerator physics

Resonant Extraction in Mu2e*

- Two families of sextupoles control the amplitude and phase of the resonance driving terms.
- Ramped quads control the distance of the tune from the Q_x=29/3 resonance.
- Trim dipoles control the position of the beam relative to the electrostatic septum.

Septum

Beam

Mu2e Spill Structure

Extinction

 Because out-of-time protons could produce prompt backgrounds, it is critical that there be nothing between the proton bunches at the 10⁻¹⁰ fractional level.

• In addition to the challenge of achieving this level of extinction will be the challenge of verifying that we have achieved it ("Extinction Monitoring")

🚰 Fermilab

Principle of Beam Line Extinction

• A magnet is used to deflect out-of-time beam into a downstream collimator

• Ideally, we would use a square pulse to kick out-of-time beam out of (or in-time beam into) the transmission channel, but the 600 kHz bunch rate makes this impossible with present technology.

🚰 Fermilab

- We will therefore focus on a system of resonant magnets or "AC Dipoles".
 - Even this isn't trivial

Design Considerations

- The cost and complexity of magnets scale roughly with the stored energy
- Clearly, we want to minimize *g* (waist in the non-bend plane)

 The bend plane is a little less obvious. A detailed analysis shows that to achieve the required bend

- →Large β_D , long weak magnets
 - Assume β_D =250m, L=6m
 - Factor of 4 better than "typical" values of β_D =50m, L=2m

Driving consideration in beam line design!

Dual Harmonic Waveform

- AC Dipole driven by two harmonics
 - 300 kHz (half bunch frequency) to sweep out of time beam into collimators
 - 4.5 MHz (15th harmonic) to maximize transmission of in-time beam
 - Beam transmitted at nodes!

• Higher harmonic optimized for maximum transmission: 99.5%

🚰 Fermilab

AC Dipole Design and Prototype

- AC dipole system consists of 6 identical one meter elements, arranged in two 3-meter vacuum vessels.
- Extensive tests done with half-meter prototype
 - meets all specifications

Copper tube Power Leads & Cooling channels Ferrite plates Beam direction Al case (half shown)

alf-meter

FERRITE BLOCKS CLAMPS

POWER LEADS

Elements individually powered

MAGNET MODULE

Extinction Collimation: Two Separate Collimation Issues

Additional Problem: Slow Extraction Tails

• Beam that strikes the electrostatic septum during slow extraction results in a large tail in phase space, which can result in beam being scattered into the transmission channel.

Requires an additional collimator

Summary: Collimator Needs and Locations

August 3, 2017

Simulation Procedure

- Longitudinal development in Recycler and Delivery Ring simulated by numerical integration model (I. Kourbanis, S. Werkema)
- Beam propagation and evolution of third-order resonance in Delivery Ring simulated by Synergia (V. Nagaslaev)
- Extraction interaction with electrostatic septum simulated by MARS (V. Nagaslaev)
- Beam line propagation and interaction with collimators simulated with G4Beamline as a function of AC dipole deflection angle to produce transmission tables (E. Prebys)
- Transmission tables convoluted with longitudinal distributions to optimize harmonic content of AC dipole magnets transmission of in-time beam and extinction of out-of-time beam (E. Prebys)

Performance

Simulation Results

Fraction of DR extracted beam outside of ±125 ns:	2.1×10 ⁻⁵
In-time beam transmission:	99.5%
Beam line extinction:	<5×10 ⁻⁸
Total extinction:	1.1×10 ⁻¹²
Extinction Requirement:	<1.0×10 ⁻¹⁰

Almost two order of magnitude margin

Extinction Monitor*

- No confidence in extinction unless we can verify it!
- Must measure extinction to 10⁻¹⁰ precision
 - Roughly 1 proton every 250 bunches!
- Required ~10⁸ dynamic range precludes direct measurement
 - Particles in bunches would blind detector to out of time particles
- Focus on statistical technique
 - Designed a monitor to detect a *small fraction* of scattered particles from target
 - 10 50 per in-time bunch
 - Statistically build up precision profile for in time and out of time beam.
- Requirement: 90% C.L. for 10⁻¹⁰ extinction after 6 x 10¹⁶ p.o.t.
 - Signal rate per p.o.t. must be > $2.3 / 6 \times 10^6 = 0.4 \times 10^{-6}$
 - i.e. 16 for a 4 x 10⁷ bunch

*P. Kasper

🛟 Fermilab

Extinction Monitor Design*

Extinction Monitor Performance*

Reconstructed 4528 tracks/5.1 \times 10⁹ POT = 0.89 \times 10⁻⁶ yield

Backgrounds considered

- Accidental combination
- Cosmic rays
- Off-target interactions
- → Negligible at 10⁻¹⁰ level

Summary

- Mu2e had developed innovative techniques to deliver the beam structure required by the experiment, including the stringent limits on out-of-time beam ("extinction")
- We have a robust technique for verifying that we have achieved the required level of extinction.
- A projects are well on track to meet the schedule of the experiment as a whole.

