LHC Interaction Region

Relative beam sizes around $P1$ (Atlas) in collision
Outline

- Tevatron
 - pBar cooling
 - luminosity

- LHC
 - parameters
 - “The Incident”
 - Maximizing luminosity (HL-LHC)

- What’s next?
The Linac accelerated beam to 400 MeV, and injected it into the Booster.

The Booster accelerated beam from 400 MeV to 8 GeV and transferred it to the Main Injector.

The Main Injector accelerated beam from 8 GeV to 120 GeV, and this beam was used to produce 8 GeV antiprotons.

Antiprotons were accumulated for roughly 1 day.

These were then accelerated by the Main Injector to 150 GeV, and injected into the Tevatron.

The Tevatron accelerated protons and antiprotons to 980 GeV and collided them for ~1 day.
120 GeV protons strike a target, producing many things, including antiprotons.

- A Lithium lens focuses these particles (a bit)
- A bend magnet selects the negative particles around 8 GeV. Everything but antiprotons decays away.

- The antiproton ring consists of 2 parts
 - the Debuncher
 - the Accumulator.
Particles enter with a narrow time spread and broad energy spread.

High (low) energy pbars take more (less) to go around…

…and the RF is phased so they are decelerated (accelerated),

resulting in a narrow energy spread and broad time spread.

At this point, the pBars are transferred to the accumulator, where they are “stacked”
Stochastic cooling of antiprotons

- Positrons will naturally “cool” (approach a small equilibrium emittance) via synchrotron radiation.
- Antiprotons must rely on active cooling to be useful in colliders.
- Principle: consider a single particle which is off orbit. We can detect its deviation at one point, and correct it at another:
 - But wait! If we apply this technique to an ensemble of particles, won’t it just act on the centroid of the distribution? Yes, but...
 - Stochastic cooling relies on “mixing”, the fact that particles of different momenta will slip in time and the sampled combinations will change.
 - Statistically, the mean displacement will be dominated by the high amplitude particles and over time the distribution will cool.
• The **Main Injector** can accept 8 GeV protons OR antiprotons from

 • Booster

 • The anti-proton accumulator

 • The **8 GeV Recycler** (which shares the same tunnel and stores antiprotons)

• It can accelerate **protons** to 120 GeV (in a minimum of 1.4 s) and deliver them to

 • The antiproton production target.

 • The fixed target area.

 • The NUMI beamline.

• It can accelerate **protons OR antiprotons** to 150 GeV and inject them into the Tevatron.
History of Fermilab Luminosity

Tev Collider Luminosity

ISR (pp) record
SppS record
Original Run II Goal
Main Injector Construction
Discovery of top quark (1995)

87 Run
Run 0
Run 1a
Run 1b
Run II
Beyond a few hundred GeV, most interactions take place between gluons and/or virtual “sea” quarks.
- No real difference between proton-antiproton and proton-proton

Because of the symmetry properties of the magnetic field, a particle going in one direction will behave exactly the same as an antiparticle going in the other direction
- Can put protons and antiprotons in the same ring
 - This is how the SppS (CERN) and the Tevatron (Fermilab) did it.

The problem is that antiprotons are hard to make
- Can get >1 positron for every electron on a production target
- Can only get about 1 antiproton for every 50,000 protons on target!
- It took a day to make enough antiprotons for a “store” in the Fermilab Tevatron
- Ultimately, the luminosity is limited by the antiproton current.
Antiprotons for LHC?

- At the design luminosity of the LHC, the antiproton “burn” rate would be

\[\sigma_{\bar{p}p}\mathcal{L} = (100 \text{ mbarns})(10^{34}) = (0.1 \times 10^{24})(10^{34}) = 10^9 \bar{p}/s \]

- This is about 15 times the maximum production rate achieved by the Fermilab antiproton source
 - No one has a good idea how to do this
 - The required proton beam would be megawatts (=neutrino beam)

- For this reason, it was long recognized that the next collider would be proton proton.
1980’s - US begins planning in earnest for a 20 TeV+20 TeV “Superconducting Super Collider” or (SSC).
- 87 km in circumference!
- Two separate beams (like the ISR)
- Considered superior to the “Large Hadron Collider” (LHC) then being proposed by CERN.

1987 - site chosen near Dallas, TX

1989 - construction begins

1993 - amidst cost overruns and the end of the Cold War, the SSC is cancelled after 17 shafts and 22.5 km of tunnel had been dug.

2001 - After the end of the LEP program at CERN, work begins on reusing the 27 km tunnel for the 7 TeV+ 7 TeV LHC
- Tunnel originally dug for LEP
 - Built in 1980’s as an electron positron collider
 - Max 100 GeV/beam, but 27 km in circumference!!
Design:

- 7 TeV+7 TeV proton beams
 - Can’t make enough antiprotons for the LHC
 - Magnets have two beam pipes, one going in each direction.
- Stored beam energy 150 times more than Tevatron
 - Each beam has only 5×10^{-10} grams of protons, but has the energy of a train going 100 mph!!
- These beams are focused to a size smaller than a human hair to collide with each other!

- 27 km in circumference
- 2 major collision regions: CMS and ATLAS
- 2 “smaller” regions: ALICE and LHCb
e^+e^- or proton-antiproton (opposite charge) colliders had particles going in *opposite* directions in the *same* beam pipe

Because the LHC collides protons (same charge), the magnets have two apertures with *opposite* fields

dipoles (B_{max} = 8.3 T)
Nominal LHC Parameters Compared to Tevatron

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tevatron</th>
<th>“nominal” LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>6.28 km (2*π)</td>
<td>27 km</td>
</tr>
<tr>
<td>Beam Energy</td>
<td>980 GeV</td>
<td>7 TeV</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>36</td>
<td>2808</td>
</tr>
<tr>
<td>Protons/bunch</td>
<td>275x10^9</td>
<td>115x10^9</td>
</tr>
<tr>
<td>pBar/bunch</td>
<td>80x10^9</td>
<td>-</td>
</tr>
<tr>
<td>Stored beam energy</td>
<td>1.6 + .5 MJ</td>
<td>366+366 MJ</td>
</tr>
<tr>
<td>Magnet stored energy</td>
<td>400 MJ</td>
<td>10 GJ</td>
</tr>
<tr>
<td>Peak luminosity</td>
<td>3.3x10^{32} cm^{-2}s^{-1}</td>
<td>1.0x10^{34} cm^{-2}s^{-1}</td>
</tr>
<tr>
<td>Main Dipoles</td>
<td>780</td>
<td>1232</td>
</tr>
<tr>
<td>Bend Field</td>
<td>4.2 T</td>
<td>8.3 T</td>
</tr>
<tr>
<td>Main Quadrupoles</td>
<td>~200</td>
<td>~600</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>4.2 K (liquid He)</td>
<td>1.9K (superfluid He)</td>
</tr>
</tbody>
</table>

Increase in cross section of up to 5 orders of magnitude for some physics processes

*Each beam = TVG@150 km/hr ➔ very scary numbers

\[1.0 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \sim 50 \text{ fb}^{-1}/\text{yr}= \sim 5 \times \text{total TeV data}\]
Without beam cleaning (collimators):
Quasi immediate quench of superconducting magnets (for higher intensities) and stop of physics.
Required very good cleaning efficiency.
Sept 10, 2008: The (first) big day

- 9:35 - First beam injected
- 9:58 - beam past CMS to point 6 dump
- 10:15 - beam to point 1 (ATLAS)
- 10:26 - First turn!
- ...and there was much rejoicing

Commissioning proceeded smoothly and rapidly until September 19th, when something very bad happened.
Italian newspapers were very poetic (at least as translated by “Babel Fish”):

"the black cloud of the bitterness still has not been dissolved on the small forest in which they are dipped the candid buildings of the CERN"

“Lyn Evans, head of the plan, support that it was better to wait for before igniting the machine and making the verifications of the parts.“*

Or you could Google “What really happened at CERN”:

Strange Incident at CERN

Did the LHC Create a Black Hole? And if so, Where is it Now?

by

George Paxinos

in conversation with

“An Iowan Idiot”

* “Big Bang, il test bloccato fino all primavera 2009”, Corriere dela Sera, Sept. 24, 2008

**http://www.rense.com/general83/IncidentatCERN.pdf*
Sector 3-4 was being ramped to 9.3 kA, the equivalent of 5.5 TeV
- All other sectors had already been ramped to this level
- Sector 3-4 had previously only been ramped to 7 kA (4.1 TeV)

At 11:18AM, a quench developed in the splice between dipole C24 and quadrupole Q24
- Not initially detected by quench protection circuit
- Power supply tripped at .46 sec
- Discharge switches activated at .86 sec

Within the first second, an arc formed at the site of the quench
- The heat of the arc caused Helium to boil.
- The pressure rose beyond .13 MPa and ruptured into the insulation vacuum.
- Vacuum also degraded in the beam pipe

The pressure at the vacuum barrier reached ~10 bar (design value 1.5 bar). The force was transferred to the magnet stands, which broke.

Official talk by Philippe LeBrun, Chamonix, Jan. 2009
Pressure forces on SSS vacuum barrier

1/3 load on cold mass (and support post) ~23 kN

1/3 load on barrier ~46 kN

Total load on 1 jack ~70 kN

V. Parma

E. Prebys, Hadron Colliders, Lecture 3
Collateral damage: magnet displacements
Collateral damage: secondary arcs
Collateral damage: ground supports
Collateral damage: Beam Vacuum

Arc burned through beam vacuum pipe

OK Debris MLI

Arcing position

MLI soot clean

HCPSS, August 11-22, 2014

E. Prebys, Hadron Colliders, Lecture 3
Why did the joint fail?
- Inherent problems with joint design
 - No clamps
 - Details of joint design
 - Solder used
- Quality control problems

Why wasn’t it detected in time?
- There was indirect (calorimetric) evidence of an ohmic heat loss, but these data were not routinely monitored
- The bus quench protection circuit had a threshold of 1V, a factor of >1000 too high to detect the quench in time.

Why did it do so much damage?
- The pressure relief system was designed around an MCI Helium release of 2 kg/s, a factor of ten below what occurred.
What happened?

Working theory: A resistive joint of about 220 nΩ with bad electrical and thermal contacts with the stabilizer

- Loss of clamping pressure on the joint, and between joint and stabilizer
- Degradation of transverse contact between superconducting cable and stabilizer
- Interruption of longitudinal electrical continuity in stabilizer

Problem: this is where the evidence used to be

A. Verweij

E. Prebys, Hadron Colliders, Lecture 3

HCPSS, August 11-22, 2014
Interim Improvements (2008-2009)

- **Bad joints**
 - Test for high resistance and look for signatures of heat loss in joints
 - Warm up to repair any with signs of problems (additional three sectors)

- **Quench protection**
 - Old system sensitive to 1V
 - New system sensitive to 0.3 mV

- **Pressure relief**
 - Warm sectors (4 out of 8)
 - Install 200mm relief flanges
 - Enough capacity to handle even the maximum credible incident (MCI)
 - Cold sectors
 - Reconfigure service flanges as relief flanges
 - Reinforce floor mounts
 - Enough capacity to handle the incident that occurred, but not quite the MCI
After the first shutdown

- **2009**
 - November 20th: Particles circulate again
 - Based on a detailed thermal model of the joints and failure scenarios, it’s decided to limit energy to 3.5 TeV

- **2010**
 - March 30th: 3.5 + 3.5 TeV collisions
 - Energy limited by flaw which caused accident

- **2012**
 - January (Chamonix meeting): based on observed performance and revised modeling, it’s decided to increase energy to 4 TeV.
 - April 5th: Energy increased to 4 + 4 TeV
 - July 4th: Announced the discovery of the Higgs

- **2013**
 - Feb. 14th: Start 2 year shutdown to address design flaw and allow full energy operation
 - ALL (~10000) joints resoldered, clamped and radiographed.
 - Remaining sectors outfitted with improved pressure relief.
Recall: “lost training” problem before “incident”

- Note, at high field, max 2-3 quenches/day/sector
 - Sectors can be done in parallel/day/sector (can be done in parallel)
- Ultimate energy somewhere between 6.5 and 7 TeV/beam

*my summary of data from A. Verveij, talk at Chamonix, Jan. 2009
After the shutdown

- After repairs are completed, accelerator will come back up in 2015 at something close to the design energy
 - At least 6.5 TeV/beam

- The LHC will be the centerpiece of the world’s energy frontier physics program for at least the next 15-20 years.
The future begins now

How can we increase the luminosity??

3000 fb\(^{-1}\)
~ 50 years at nominal LHC luminosity!
Limits to LHC Luminosity*

Total beam current, limited by machine protection(!), e-cloud and other instabilities

\[L = \left(\frac{4\pi}{4\pi} \right)^n b N_n \beta^* \left[\left(\frac{N_b}{\mathcal{E}_N} \right)^R \phi \right] \]

\(\beta^* \), limited by
- magnet technology
- chromatic effects

Brightness, limited by
- PSB injection energy
- PS
- Max tune-shift

Geometric factor, related to crossing angle...

*see, eg, F. Zimmermann, “CERN Upgrade Plans”, EPS-HEP 09, Krakow, for a thorough discussion of luminosity factors.
Current LHC Acceleration Sequence and Brightness Issues

Space Charge Limitations at Booster and PS injection

Transition crossing in PS and SPS

Schematic ONLY. Scale and orientation not correct
Addressing brightness issues

- There are plans to address two of the major sources of emittance blowup in the injector chain
 - Injection from the LINAC into the PS Booster
 - The current linac uses proton painting at 50 MeV
 - New LINAC4 will use ion injection at 160 MeV
 - Space charge at injection into PS
 - Extraction energy of the PS Booster will be increased from 1.4 to 2.0 GeV
- These upgrades are scheduled to take place during Long Shutdown 2
$eta(Δs) = β^* + \frac{Δs^2}{β^*}$

- small $β^*$ means large $β$ (aperture) at focusing triplet

$β$ distortion of off-momentum particles (affects collimation)
The Case for New Quadupoles

- HL-LHC Proposal: $\beta^*=55$ cm \rightarrow $\beta^*=10$ cm
- Just like classical optics
 - Small, intense focus \rightarrow big, powerful lens
 - Small β^* \rightarrow huge β at focusing quad

Existing quads
- 70 mm aperture
- 200 T/m gradient

Proposed for upgrade
- 140 mm aperture
- 200 T/m gradient
- Field 70% higher at pole face
 \Rightarrow Beyond the limit of NbTi

- Need bigger quads to go to smaller β^*
Motivation for Nb\textsubscript{3}Sn

- Nb\textsubscript{3}Sn can be used to increase aperture/gradient and/or increase heat load margin, relative to NbTi

- Very attractive, but no one has ever built accelerator quality magnets out of Nb\textsubscript{3}Sn

- Whereas NbTi remains pliable in its superconducting state, Nb\textsubscript{3}Sn must be reacted at high temperature, causing it to become brittle
 - Must wind coil on a mandril
 - React
 - Carefully transfer to yolk

Limit of NbTi magnets

Graph showing comparison between NbTi and Nb\textsubscript{3}Sn in terms of temperature margin and gradient. The Nb\textsubscript{3}Sn line reaches a 120 mm aperture at 120 T/m.
US-LARP Magnet Development Tree

- **Subscale Quadrupole (SQ)**
 - 0.3 m long
 - 110 mm bore

- **Technology Quadrupoles (TQS, TQC)**
 - 1 m long
 - 90 mm bore

- **Long Quadrupole (LQS)**
 - 3.7 m long
 - 90 mm bore

- **High Field Quadrupole (HQ)**
 - 1 m long
 - 120 mm bore

- **Subscale Magnet (SM)**
 - 0.3 m long
 - No bore

- **Long Racetrack (LRS)**
 - 3.6 m long
 - No bore

- **LHC Prototype**
 - 4 m long
 - 150 mm bore

- **Completed**
 - Length scale-up

- **Achieved**
 - 220 T/m

- **Being tested**
 - High field
 - Accelerator features

- **Being designed jointly with CERN**
IR Layout: the need for a crossing angle

- Nominal Bunch spacing: 7.5 m
- Collision spacing: 3.75 m
- ~2x15 parasitic collisions per IR
 - Remember: ALL of these would cause equal tune shifts

→ Need Crossing Angle
Crossing Angle Considerations

- Crossing angle reduces luminosity

\[L = \left(\frac{Y_{\text{rev}}}{4\pi} \right) \frac{n_b N_b}{\beta^*} \left[\frac{N_b}{N} \right] R_\phi \] \[R_\phi = \frac{1}{\sqrt{1 + \phi_{\text{piw}}^2}} ; \quad \phi_{\text{piw}} \equiv \frac{\theta_c \sigma_z}{2\sigma_x} \]

Minor effect at current \(\beta^* \), but largely cancels benefit of lowering \(\beta^* \)

Without some compensation for crossing angle, reducing the \(\beta^* \) will only increase luminosity by ~75%!
Technical Challenges

- Crab cavities have only *barely* been shown to work.
 - Never in hadron machines
- LHC bunch length \rightarrow low frequency (400 MHz)
- 19.2 cm beam separation \rightarrow “compact” (exotic) design

Additional benefit

- Crab cavities may help level luminosity!
Luminosity Leveling

- Original goal of luminosity upgrade: $>10^{35} \text{ cm}^{-2}\text{s}^{-1}$
 - Leads to unacceptable pileup in detectors
- New goal: 5×10^{34} leveled luminosity

$L \left[10^{34} \text{ cm}^{-2}\text{s}^{-1}\right]$

![Graph showing luminosity profiles with and without leveling.](image)

- Options
 - Crab cavities
 - β^* modifications
 - Lateral separation

“Crab kissing” - sort of complicated
Crab Kissing*

HL-LHC w/o CK scheme
- 12.5 MV crabs in X-plane, round optics (15/15 cm), $s_z = 7.5$ cm

“HL-LHC+” with CK scheme and Gaussian bunch profile
- 7+7 MV crabs in X and $||$-plane, flat optics (40/10 cm), $s_z = 10$ cm

“HL-LHC++” with CK scheme and rectangular bunch profile
... with 400+800 MHz or 200+400 (still keeping $s_z = 10$ cm)

*E. Prebys, Hadron Colliders, Lecture 3
HCPSS, August 11-22, 2014
S. Fartoukh*
Long Term Plan*

- 2012: splice consolidation
- 2013: button collimators, R2E project
- 2014: experiment beam pipe

- 10^34 cm^-2s^-1
- 50 ns bunch high pile up ~40

- 1.5 x 10^34 cm^-2s^-1
- 25 ns bunch pile up ~40

- 1.7-2.2 x 10^34 cm^-2s^-1
- 25 ns bunch pile up ~60

Technical limits (experiments, too) like:

*L. Rossi, LARP/HL-LHC Meeting, Nov. 2013
Summary: Evolution of the Energy Frontier

 biologist, August 11-22, 2014

47

E. Prebys, Hadron Colliders, Lecture 3

HCPSS, August 11-22, 2014

~a factor of 10 every 15 years

This will not continue
The energy of Hadron colliders is limited by feasible size and magnet technology. Options:

- Get very large (~100 km circumference)
- More powerful magnets (requires new technology)
Future Circular Collider (FCC)

- Currently being discussed for ~2030s
- 80-100 km in circumference
- Niobium-3-Tin (Nb$_3$Sn) magnets.
- ~100 TeV center of mass energy
Some things to think about for FCC

- Recall that luminosity is given by

\[L = f_{\text{rev}} \frac{1}{4\pi} n_b N_b^2 \frac{\gamma}{\beta^* \epsilon_N} R \]

- If we wanted to keep just \(10^{34}\) luminosity (probably not enough), the \(\gamma\) factor would let us back down on \(N_b\) a bit, but to keep the crossing rate the number of bunches would increase with the circumference so stored energy would be

\[
U_{\text{VLHC}} \approx U_{\text{LHC}} \frac{E_{\text{VLHC}}}{E_{\text{LHC}}} \sqrt{\frac{E_{\text{LHC}}}{E_{\text{VLHC}}}} \frac{C_{\text{VLHC}}}{C_{\text{LHC}}} = U_{\text{LHC}} \sqrt{\frac{50}{7}} \frac{100}{27}
\]

\[= 10 \times U_{\text{LHC}}
\]

\[= 3.6 \text{ GJ} \]

\[\sim 1 \text{ ton on TNT} = \text{Scary!}\]

- What are the options to make it more compact, and or go to even higher energies?
Superconductor Options

- **Traditional**
 - NbTi
 - Basis of ALL superconducting accelerator magnets to date
 - Largest practical field ~8T
 - Nb$_3$Sn
 - Advanced R&D
 - Being developed for large aperture/high gradient quadrupoles
 - Largest practical field ~14T

- **High Temperature**
 - Industry is interested in operating HTS at moderate fields at LN$_2$ temperatures. We’re interested in operating them at high fields at LHe temperatures.
 - MnB$_2$
 - promising for power transmission
 - can’t support magnetic field.
 - YBCO
 - very high field at LHe
 - no cable (only tape)
 - BSCCO (2212)
 - strands demonstrated
 - unmeasureably high field at LHe

Focus on this, but very expensive ➔ pursue hybrid design
Bi-2212 (YBCO)

Bi-2212, Je = 800 A/mm²

P. McIntyre 2005 – 24T ss Tripler, a lot of Bi-2212, Je = 800 A/mm²

E. Todesco 2010
20 T, 80% ss
30% NbTi
55% NbSn
15% HTS
All Je < 400 A/mm²
Ion colliders
- Challenges: accelerating different species of ions.
- Pb-p challenge: RF sets period, but slightly different momentum = slightly different orbit.

e-p colliders
- Challenges:
 - efficient high intensity electron beams
 - interaction regions
Opportunity: LARP Toohig Fellowship

- Named for Tim Toohig, one of the founders of Fermilab
- Open to recent PhD’s in accelerator science or HEP.
- Successful candidates divide their time between CERN and one of the four host labs.

Past
- Helene Felice, LBNL, now staff
- Rama Calaga, BNL, now CERN staff
- Ricardero de Maria, BNL, now CERN Fellow
- Themis Mastoridis, SLAC, now CERN Fellow
- Ryoichi Miyamoto, BNL, now ESS Staff
- Dariusz Bocian, FNAL, now Ass. Prof. at The Henryk Niewodniczański Institute of Nuclear Physics
- Valentina Previtali, FNAL, now teaching in Switzerland

Present
- Simon White, BNL
- John Cesaratto, SLAC
- Ian Pong, LBNL
- Silvia Verdu Andres, BNL
Further Reading

- Edwards and Syphers “An Introduction to the Physics of High Energy Accelerators”
 - My personal favorite
 - Concise. Scope and level just right to get a solid grasp of the topic
 - Crazy expensive, for some reason.

- Helmut Wiedemann, “Particle Accelerator Physics”
 - Probably the most complete and thorough book around (originally two volumes)
 - Well written
 - Scope and mathematical level very high

- Edmund Wilson, “Particle Accelerators”
 - Concise reference on a number of major topics
 - Available in paperback (important if you are paying)
 - A bit light

- Klaus Wille “The Physics of Particle Accelerators”
 - Same comments

- Fermilab “Accelerator Concepts” (“Rookie Book”)
 - Particularly chapters II-IV

- USPAS course: http://uspas.fnal.gov/