Proton Economics and Proton Plan - Update

Eric Prebys
FNAL Accelerator Division
Outline

- **General Issues**
 - Limitations
 - Demands

- **Recent Successes**
 - The past year
 - Proton intensity
 - Exposure to workers
 - Other topics

- The “Proton Plan”
 - Near future
 - Long term

- Projections
What Limits Total Proton Intensity?

- Maximum number of Protons the Booster can stably accelerate: 5×10^{12}
- Maximum average Booster rep. Rate: currently 7.5 Hz, may have to go to 10 Hz for NuMI+ (full) MiniBooNE
- (NUMI only) Maximum number of booster batches the Main Injector can hold: currently 6 in principle, possibly go to 11 with fancy loading schemes in the future
- (NUMI only) Minimum Main Injector ramp cycle time (NUMI only): $1.4 \text{s} + \text{loading time (at least } 1/15 \text{s} \times \text{n batches)}$
- Losses in the Booster:
 - Above ground radiation
 - **Damage and/or activation of tunnel components**

Our biggest worry at the moment!!!!
Proton Demand

- **Shortfall**
- **Booster Stretch**
- **Booster Base**
- **NuMI**
- **pbar production**

MiniBooNE Turn-on

NuMI Turn-on

7.5 Hz

Now (Note Improvement!)

Have now exceeded initial NuMI needs!!!!

This is a goal, not a promise!!!
Big Improvements in the Last Year

- Primary extraction “dogleg fix”
 - Increase spacing between magnets in chicane system
 - Reduces distortion to injection lattice by ~40%
- Vertical alignment
 - Eliminate ¼” misalignment at collimator region
 - Improve high field orbit
- 400 MeV line work
 - Better understanding
 - Improved stability and repeatability
- Injection bump (ORBUMP) improvements
 - Improved water flow
 - New, lower resistance capacitors
 - Much more reliable
- Collimator installation and commissioning
Vertical Alignment

- **Magnet moves**
 - Moved 9 (out of 48) girders and one magnet on a girder

![Graph showing vertical alignment](image)

- Fix high field orbit
- Fix L3 misalignment

Index:
- 1=24-3, 2=24-4, 3=1-1, etc

PAC, June 20th, 2004 - Prebys
Effects of Moves on High Field Orbit

Before (blue curve)

After (matches prediction)

PAC, June 20th, 2004 - Prebys
Long 3 Dogleg Work

- Increase spacing between dogleg pairs from 18” to 40” to reduce lattice distortions at injection.

New magnet to match extraction line
Collimator System

Basic Idea...

A scraping foil deflects the orbit of halo particles…

…and they are absorbed by thick collimators in the next periods.

- Should dramatically reduce uncontrolled losses
Collimator Commissioning

- We have begun to use the collimators in normal operation:

![Graph showing losses with and without collimators]

- Losses w/o collimators
- Losses with collimators
Taking advantage of Collimators

- **General principles**
 - Activation was “OK” before collimator implementation.
 - Want to use collimators to increase rate while keeping activation “about the same”.

- Historically, the “watt meter” has been our most reliable indicator of activation, but
 - It works by counting lost protons
 - Can’t distinguish protons absorbed on the collimator

- Now must rely on individual loss monitors
- Tighten up limits based on detailed study of activation versus measured loss
- Do weekly radiation surveys
- Increase rate (watt limit) to keep activation at roughly the level it was before the collimators were implemented.
Basis of activation assessment - Dose to Workers

- Administrative limit at 300 mRem/qtr
- This is “ok”, but we don’t want to get any worse

PA Shop by Qtr

- **MiniBooNE**

- Qtr and Year

- mrem

- 0 20 40 60 80 100 120 140 160 180

- O’Connel
- Plant
- Ruffin
- Scala
- Zifko

PAC, June 20th, 2004 - Prebys
Normalized Dose to Workers (as reported to DOE)

Fermilab Total Effective Dose Equivalent Normalized to 8 GeV Proton Intensity

- - - TEDE/Beam

- - - Annual Average TEDE/beam

Date

PAC, June 20th, 2004 - Prebys
Activation History In Booster

- MiniBooNE
 - x2~3 activation
- 16x proton increase

Collimators
Change In Activation Since Collimators

Since Collimators

Collimator region

L3 Extraction

L13 Extraction

RF Region

Location

PAC, June 20th, 2004 - Prebys
Activation in RF Cavities

MiniBooNE

Collimators

Pre-MiniBooNE levels!!
Booster History

MiniBooNE

Power Loss

Total proton rate

Energy loss/proton

PAC, June 20th, 2004 - Prebys
How far have we come?

Charge through Booster cycle

Energy Lost

- **Typical:**
 - 5.5×10^{12} protons/batch to stacking (Run II handbook = 5×10^{12})
 - $>7 \times 10^6$ pph to MiniBooNE (MiniBooNE goal 9×10^{16})

- **Records:**
 - 6×10^{12} protons/batch to stacking
 - 8×10^6 pph to MiniBooNE (current administrative limit)

PAC, June 20th, 2004 - Prebys
Effect of increased intensity (recent running)

- 4E12
- 5E12

Energy Lost per proton

~5% more losses (activation) at 5E12

Protons per pulse

Can really deliver 5E12 efficiently for the first time!!!!!
Progress in Beam Cogging

- Vital to multibatch operation
 - Slipstacked pBar production - after Main Injector beam loading compensation in shutdown
 - Multibatch to NuMI - assume 1/05

- Cogging principle demonstrated
 - Have coggled multi-batch transfers up to 4E12 protons/batch
 - Expect to be fully operational soon
Current Status - Summary

- Exceeding Run II intensity goals
- Can deliver 5E12 protons per batch with good efficiency
- Regularly delivering ~80% of MiniBooNE goal
- Demonstrated NuMI intensities
- Expect increased intensity in the near future, quite possibly to 9E16 pph MiniBooNE goal.
- Cogged multibatch operation demonstrated at 80% of nominal intensity.
 - Expect full intensity test soon.
 - Last Run II milestone for the proton source.
"Proton Plan"

- The details of proton demand and issues can be found in an official report to the director at:
 www.fnal.gov/directorate/program_planning/studies/ProtonReport.pdf

- **Working assumptions:**
 - Existing proton source must last at least another 10 years or so in more or less its current configuration.
 - During that time, a new "proton driver" will be built, which will ultimately replace the existing proton source.
 - Proton source improvements should require no significant downtimes beyond those needed for other reasons.
 - The maximum total funding for proton source improvements will be of the order of $18M over the next few years.
 - Near term projects most important to performance
Scope of Improvements

- The level of funding precludes some things which have been discussed:
 - Replacement or major upgrade of 200 MHz linac
 - Official policy on 7835 PA's: keep fingers crossed.
 - Decrease of Main Injector ramp time
 - Unless it is done as part of Proton Driver
- For this reason, the proton plan focuses primarily on the Booster
 - Decreasing uncontrolled losses.
 - Increasing reliable average repetition rate.
 - Biggest decisions involve plan for RF system.
Booster RF Issues

- The existing RF cavities are an aperture restriction

- They are a high maintenance item (primarily the PA), so their activation is a worry.
- There is a possibility that heating could be a worry beyond 7.5 Hz.
- The RFSUM of the existing 18-cavity system is a limitation to the maximum proton batch size.

Decisions about the RF system are the most significant part of the plan, at least from the finance/resource point of view.
Booster RF Options

- **New, solid state PA’s**
 - Dramatically reduce maintenance
 - Similar to Main Injector design
 - One being used already.
 - Total cost: ~$7M
 - Definitely part of the plan

- **Increase number of RF cavities:**
 - Can use the two large aperture prototypes built with help from MiniBooNE and NuMI/Minos universities
 - Hope to have at least one in by end of Summer shutdown.
 - Second in during 2005.
 - Could potentially increase Booster batch size to 6.5E12 or higher.
RF Cavity Replacement Options

- Control losses with alignment and collimators?
 - Don’t replace
 - Should know by ~8/04

- Move forward with 5” prototype design?
 - Design complete and tested
 - Could begin procurement and construction immediately in FY05.
 - Aggressive schedule could have cavities in place by 2007
 - Cost: ~6M

- Completely new design?
 - Could be designed with higher GE voltage and reduced HOM.
 - Frequency range a challenge
 - Could have design by end of 2005, cavities in place by 2008
 - Plan to decide on preliminary recommendation by 8/04
Corrector Packages

- The Booster contains corrector packages at each of the 48 sub-periods.
 - Horizontal trim
 - Vertical trim
 - Quad
 - Skew quad
- The trims are not powerful enough to control the orbit throughout the cycle
- The quads are not powerful enough to fully control the tune/coupling throughout the cycle
- We would like to replace the corrector system with one with roughly 3-4 times the strength.
- Working with TD on the specifications.
- Could have in place in ~2 years
- Cost ~3M.
By adding a 30 Hz component to the Booster magnetic lattice, we could reduce the maximum dp/dt by \sim35%, effectively increasing the RF power.

- Pursue prototype in 2005
- If successful, implement in 2006
- Cost \sim1M
Major Linac Projects

- Quad power supplies
 - Very old technology, reliability concern
 - Major source of PCB’s
 - About $1M to replace

- 7835 filament current stability
 - Believed to be a source of linac instability
 - Investigating 480 isolation
 - Plan to implement on all stations ASAP
 - Cost ~100K
Projects - Near term

- Fall Shutdown
 - Modify L13 extraction region
 - Increased aperture
 - A factor of 3 reduction in injection lattice distortion
 - Use prototype RF cavity at 19th cavity and prep for 20th
 - Increase reliability
 - Increase efficiency
 - Allow batch intensities of 6.5E12 or higher
 - Add extra extraction kicker
 - Increase beam aperture near extraction
 - Reduce extraction losses
 - Increase reliability (can run without one kicker)
 - Alignment projects
 - Complete RF cavity and vertical alignment
 - Complete 3D network and as-found
 - (possibly) Add two quads to 400 MeV line
 - Decrease tuning sensitivity of line
Projects - near term (cont'd)

- **ORBUMP**
 - New magnets, based on ferrites
 - New power supply, based on existing new SCR switch
 - Both ready early to mid-2005
 - -> Full 15 Hz operation
Approximate Timeline

- 2004
 - Collimators commissioned and fully operational
 - L13 Modification
 - Vertical and RF cavity alignment
 - Complete alignment network and as-found
 - 19th RF cavity added to Booster

- 2005
 - New ORBUMP magnets and Power supplies.
 - Horizontal alignment proceeds
 - Procurement for solid state PA’s
 - Either design or procurement of new RF cavities, if recommended
 - Design and procurement for new corrector system
 - New quad supplies in Linac

- 2006
 - Complete installation of solid state PA’s
 - Install new corrector system
 - Continue with RF cavity design/procurement.
 - Install 30 Hz harmonic, if recommended

- 2007
 - Complete installation of 5” RF cavities, if recommended.

- 2008
 - Complete installation of new RF system, if recommended.
Proton Projections - Basic Assumptions

- Based on stated policies of Directorate...
 - Run II (pBar production) will continue to have priority.
 - One NuMI comes on line, it will be given protons up to the lower of:
 - The Main Injector loading/ramp time limit
 - The Booster loss limit
 - IF the Main Injector loading limit is reached with significant Booster loss headroom, we will continue to run the 8 GeV line (MiniBooNE, FiNESSE, etc) up to the Booster loss limit.

- We have demonstrated the ability to deliver the intensities needed by NuMI, with at least some headroom left over for 8 GeV line operation*

- Unfortunately, under this scenario, it is still very difficult to make accurate projections wrt MiniBooNE’s future.

*I could not have made this statement a month ago!!!
Making Projections
Projecting to MiniBooNE

- Rather than use the instantaneous rate, will scale from typical weekly MiniBooNE totals:

![Graph showing weekly data]

- Typically 7.5E18/wk

- Baseline Scenario:
 - Improvements compensate for increased protons to pBar -> Continue to average 7.5E18/wk (have gotten 1E19 in last 7 days!)
 - Get About 1.5E18 after 1/05

- Design Scenario:
 - MBBooNE rate increases more or less linearly to 10E18/wk at 1/05
 - 5.5E18/wk after NuMI turns on.

- Stretch Scenario:
 - MBBooNE rate increases to 10E18 at 1/05
 - 5.5E18 when NuMI turns on
 - Increases to 10E18 over 2005
Protons to MiniBooNE

Date

Total protons on target

- Base
- Design
- Stretch

2004 Shutdown
2005 Shutdown
2006 Shutdown

NuMI

PAC, June 20th, 2004 - Prebys
Summary

- The proton source has made remarkable progress in the two years, and recently in particular.
- We have exceeded our Run II intensity commitments, and when beam cogging is fully operational, we will have met all of our run II specifications.
- We have demonstrated 89% of the MiniBooNE and hope to meet the goal in the near future.
- We have demonstrated NuMI intensity goals.
- We still expect significant improvement in the future.
 - By mid-2005, the Booster should be a full 15Hz machine
 - The improvements in this year’s shutdown should allow us to reach significantly higher proton throughput
- We are working toward a plan which will maximize reliable proton source output over the next 10-15 years.
Acknowledgements (it takes a village)

- I won’t name names, because I’d leave someone out, but realize that these achievements reflect enormous efforts:
 - Within the proton source department
 - Operations!!!
 - All parts of the lab
 - The MiniBooNE and NuMI collaborations
 - Other national labs
Closing Comments: Expectation Management

- What we really think we can achieve:
 - Slipstacking to provide 1E13 protons per pulse for pbar production.
 - 5E20 protons to MiniBooNE by the time NuMI fully comes on in early 2005.
 - 2-2.5E20 p/yr to NuMI in the first year of operation.
 - Increasing that over the next few years, to something over 3E20 p/yr.
 - The ability to run the 8 GeV line at some level at least during early NuMI operation.

- What we might achieve:
 - Continuing to operate the 8 GeV line at some significant level after NuMI comes on, ultimately delivering 1E21 protons to MiniBooNE and possibly supporting other experiments (e.g. FINESSE).
 - Delivering as many as 4E20 p/yr to NuMI, at which point things will be limited by Main Injector aperture and cycle time (with the present source, anyway).
 - Maintaining a total Booster output of as high as 1E21 protons/year.

- It would be unrealistic to believe:
 - We will ever send more than 4E20 p/yr to NuMI without significant (~$100M) investment in the existing complex.
 - That would be direct competition for resources with the current Proton Driver proposal.