

Mu2e Experiment*

Eric Prebys For the Mu2e Collaboration

*A Letter of Intent to Search for Charged Lepton Flavor Violation in Nuclear Muon Capture

Fermilab PAC Review, Nov. 1-3, 2007

E Prebys

- Initial Phase (MECO design, No Project X):
 - > Exploit NOvA accelerator modifications and post-Run II availability of Accumulator and Debuncher rings to mount a μ ->e conversion experiment patterned after MECO
 - 4x10²⁰ protons in ~2 years
 - Measure

$$R_{\mu e} \equiv \frac{\Gamma(\mu^{-} \mathrm{Al} \to e^{-} \mathrm{Al})}{\Gamma(\mu^{-} \mathrm{Al} \to \mathrm{capture})}$$

- Single event sensitivity of $R_{\mu e}$ =2x10⁻¹⁷
- 90% C.L. limit of R_{µe}<6×10⁻¹⁷
- ANY signal = Beyond Standard Model physics
- Ultimate goal
 - Exploit Project X and improved muon transport to achieve dramatically increased sensitivity
 - If no signal: set limit $R_{\mu e} < 1 \times 10^{-18}$
 - If signal: measure target dependence, etc

Mu2e Collaboration

R.M. Carey, K.R. Lynch, J.P. Miller*, B.L. Roberts Boston University

W.J. Marciano, Y. Semertzidis, P. Yamin Brookhaven National Laboratory

> Yu.G. Kolomensky University of California, Berkeley

C.M. Ankenbrandt, R.H. Bernstein, D. Bogert, S.J. Brice, D.R. Broemmelsiek, D.F. DeJongh, S. Geer, M.A. Martens, D.V. Neuffer, M. Popovic, E.J. Prebys*, R.E. Ray, H.B. White, K. Yonehara, C.Y. Yoshikawa Fermi National Accelerator Laboratory

> D. Dale, K.J. Keeter, J.L. Popp, E. Tatar Idaho State University

P.T. Debevec, D.W. Hertzog, P. Kammel University of Illinois, Urbana-Champaign

V. Lobashev Institute for Nuclear Research, Moscow, Russia

D.M. Kawall, K.S. Kumar University of Massachusetts, Amherst

R.J. Abrams, M.A.C. Cummings, R.P. Johnson, S.A. Kahn, S.A. Korenev, T.J. Roberts, R.C. Sah *Muons, Inc.*

> R.S. Holmes, P.A. Souder Syracuse University

M.A. Bychkov, E.C. Dukes, E. Frlez, R.J. Hirosky, A.J. Norman, K.D. Paschke, D. Pocanic University of Virginia

*Co-contact persons

Fermilab PAC Review, Nov. 1-3, 2007

E Prebys

Currently: 50 Scientists 11 Institutions

Search for Charged Lepton Flavor Violation (CLFV)

- The discovery of neutrino oscillations naturally raises the question:
 What is the rate of charged lepton flavor violation in nature?
- CLFV is a powerful probe of multi-TeV scale dynamics: complementary to direct collider searches
- Among various possible CLFV modes, rare muon processes offer the best combination of new physics reach and experimental sensitivity

Muon-to-Electron Conversion: $\mu\text{+}N \rightarrow e\text{+}N$

- Standard Model rate via Dirac neutrino mixing is too small to be observed (~10⁻⁵²)
- Very common feature of Beyond Standard Model physics at much larger rates
- Similar to $\mu \rightarrow e\gamma$, with important advantages:
 - > No combinatorial background
 - Sensitive to other types of BSM physics
 - Relative rate depends on details of physics

 At 10⁻¹⁸ (potentially, with upgraded apparatus and higher muon flux), energy scales probed would be difficult to access by other means

Fermilab PAC Review, Nov. 1-3, 2007

E Prebys

MEGA

10 ⁻¹

10 -2

Sindrum II

10

5

2

10

к

EXCLUDED

Specific Model Examples

Previous muon decay/conversion limits (90% C.L.)

μ ->e Conversion: Sindrum II

all e from target LFV µ Decay: 10 ³ cosmix suppressed $\begin{array}{l} \Gamma\left(\mu^{-} \rightarrow e^{-} \nu_{e} \overline{\nu_{\mu}}\right) &< 1.2 \times 10^{-2} \\ \Gamma\left(\mu^{-} \rightarrow e^{-} \gamma\right) &< 1.2 \times 10^{-11} \end{array}$ prompts suppressed 10 ² $\Gamma(\mu^{-} \rightarrow e^{-}e^{+}e^{-}) < 1.2 \times 10^{-12}$ $\Gamma(\mu^{-} \rightarrow e^{-}2\gamma) < 7.2 \times 10^{-11}$ 10 →e conversion at B.R.=4x10⁻¹² 1 High energy tail of coherent 85 90 95 100 110 115 120 105 Decay-in-orbit (DIO) total e energy in (MeV) $\frac{\Gamma(\mu^{-}Ti \to e^{-}Ti)}{\Gamma(\mu^{-}Ti \to \text{capture})} < 4.3 \times 10^{-12}$ $R_{\mu e} \equiv -$ Rate limited by need to veto prompt backgrounds!

• Eliminate prompt beam backgrounds by using a primary beam with short proton pulses with separation on the order of a muon life time

- Design a transport channel to optimize the transport of right-sign, low momentum muons from the production target to the muon capture target.
- Design a detector to *strongly* suppress electrons from ordinary muon decays

Detector Layout

Fermilab PAC Review, Nov. 1-3, 2007

Beam Related Rates

 Cut ~700 ns after pulse to eliminate most serious prompt backgrounds.

Fermilab PAC Review, Nov. 1-3, 2007

E Prebys

- R_{μe} = 10⁻¹⁶ gives 5 events for 4×10²⁰ protons on target
- 0.4 events background, half from out of time beam, assuming 10⁻⁹ extinction
 - Half from tail of coherent decay in orbit
 - Half from prompt

- 1997
 - > MECO proposed for the AGS at Brookhaven
 - > Approved, along with KOPIO, as part of RSVP program
- · 1998-2005
 - Design refined
 - Frequent favorable reviews
- 2005
 - > June: final reviews, very positive
 - Physics goals: HEPAP RSVP Subpanel
 - Cost and schedule: "Wojcicki Panel"
 - > July: RSVP cancelled for financial reasons
 - MECO and KOPIO "charged" for entire cost of continued AGS operation.
- 2006
 - > January: First informal meeting at BNL
 - September: First meeting at Fermilab
- 2007
 - June: Mu2e expression of interest submitted to Fermilab Directorate
 - August: First Mu2e collaboration meeting
 - October: Letter of Intent submitted to Directorate

- If the current suite of proton source upgrades is effective, there should be at least enough excess 8 GeV protons during the NOvA era to do an experiment with similar sensitivity to MECO in a reasonable amount of time.
 - The resonant operation of the 8 GeV Booster makes it impossible to directly generate the desired time structure.
 - There is a scheme to generate this time structure using the antiproton Accumulator and Debuncher rings, which will become available after the termination of the collider program.
 - This scheme requires only modest modifications beyond those planned for NOvA, with which it is fully compatible.

MI uses 12 of 20 available Booster Batches per 1.33 second cycle

Delivering Protons: "Boomerang" Scheme

 Deliver beam to Accumulator/Debuncher enclosure with minimal beam line modifications and *no civil construction*.

Present Operation of Debuncher/Accumulator

- Protons are accelerated to 120 GeV in Main Injector and extracted to pBar target
- pBars are collected and phase rotated in the "Debuncher"
- Transferred to the "Accumulator", where they are cooled and stacked
- Not used for NOvA

Rebunching in Accumulator/Debuncher

Fermilab PAC Review, Nov. 1-3, 2007

Resonant Extraction

- Exploit 29/3 resonance
- Extraction septum and Lambertson similar to Main Injector
 - Septum: 80 kV/1cm x 3m
 - Lambertson+C magnet ~.8T x 3m

Resonant Extraction Parameters		
Kinetic Energy (GeV)	8	
Working tune (v_x/v_y)	9.769/9.783	
Resonance (v_x)	29/3	
Normalized acceptance (x/y π mm-mr)	285/240	
Normalized beam emittance (π mm-mr)	20	
β at electrostatic septum (m)	15	
β at Lambertson (m)	22	
β at harmonic quads (m)	14	
Septum Position (mm/σ)	11/4.8	
Septum gap/step size (mm)	10	
Sextupole Drive Strength (T-m/m ²)	473	
Initial Tuneshift	.048	
Septum field (MV/m)	8	
Septum length (m)	3	

- Need 10⁻⁹
- Get at least ~10⁻³ from beam bunching
- Remainder from AC Dipole in beam line

 Working with Osaka (FNAL+US-Japan funds) to develop AC dipole design, as well as explore measurement options

Proposed Location

- Requires new building.
- Minimal wetland issues.
- Can tie into facilities at MiniBooNE target hall.

- A detailed cost estimate of the MECO experiment had been done just before it was cancelled*
 - Solenoids and cryogenics: \$58M
 - Remainder of experimental apparatus: \$27M
- Additional Fermilab costs have not been worked out in detail, but are expected to be on the order of \$10M.
- Hope to begin Accelerator work along with NOvA upgrades
 ~2010 (or 2011 if Run II extended)
- Based on the original MECO proposal, we believe the experiment could be operational within five years from the start of significant funding
 - > Driven by magnet construction.
 - > ~2014
- With the proposed beam delivery system, the experiment could collect the nominal 4x10²⁰ protons on target in about one to two years, with no impact on NOvA
 - > NOvA rate limited by Main Injector

*Costs in 2005 dollars, including contingency

- We have described the initial phase of mu2e, which is based on the proposed data sample of 4x10²⁰ protons.
 - > 90% C.L. limit of $R_{\mu e} < 6 \times 10^{-17}$ (improvement over existing limit of more than 4 orders of magnitude).
- The Project X linac would provide roughly a *factor* of ten increase in flux.
- Slow extraction directly from Recycler ruled out by Project X Working Group
 - Will need to load beam from Recycler to Accumulator as we are planning to do for Phase I
- A preliminary scheme to exploit this additional flux will be included in our proposal.

- There are a number of synergies between this project and muon cooling efforts
 - The Debuncher beam could be extracted in a single turn to produce the short, intense bunch needed by muon production experiments
 - Muon cooling studies have increased the understanding of solenoidal transport.
 - It is possible that a "helical cooling channel", of the sort envisioned for muon cooling, could generate a significantly higher muon yield for this experiment.
- We will investigate these in more detail for the proposal.

A combination of increased flux from Project X and a more efficient muon transport line could potentially result in a sensitivity as low as 10⁻¹⁸

Experimental Challenges for Increased Flux

- Achieve sufficient extinction of proton beam.
 - Current extinction goal directly driven by total protons
- Upgrade target and capture solenoid to handle higher proton rate
- Improve momentum resolution for the ~100 MeV electrons to reject high energy tails from ordinary DIO electrons.
- Operate with higher background levels.
- Manage high trigger rates
 - All of these efforts will benefit immensely from the knowledge and experience gained during the initial phase of the experiment.
- If we see a signal a lower flux, can use increased flux to study in detail
 - \succ Precise measurement of $R_{\mu e}$
 - Target dependence
 - \succ Comparison with $\mu{\rightarrow}e\gamma$ rate

- ~\$100K of FESS time
 - For a preliminary cost estimate of the experimental facility and beam line civil construction

~1/2 FTE beam line design expert

- to produce a preliminary design of the primary proton line, including extinction channel
- ~1/2 FTE of ES&H radiation safety expert
 - to help us produce a plan to deal with the increased flux in the pBar enclosure (VERY important!)
- ~1/2 FTE of a TD magnet expert
 - to evaluate the MECO magnet design, and advise of possible improvements.
- A dedicated postdoc and guest scientist position
 - Focus on Monte Carlo work.
 - Could also be supplemented with PPD resources

- The mu2e experiment is an opportunity for Fermilab to make an important measurement
 - > In the initial phase (without project X) we would either
 - Reduce the limit for $R_{\mu e}$ by more than four orders of magnitude ($R_{\mu e} < 6 \times 10^{-17}$ @ 90% C.L.)

OR

- Discover unambiguous proof of Beyond Standard Model physics
- This experiment benefits greatly from both the voluminous work done for the MECO proposal and by fortuitous configuration and availability of Fermilab accelerator components.
- With a combination of Project X and/or improved muon transport, we could either
 - > Extend the limit by up to two orders of magnitude

OR

> Study the details of new physics

Backup Slides

Momentum Stacking

- Inject a newly accelerated Booster batch every 67 mS onto the low momentum orbit of the Accumulator
- The freshly injected batch is accelerated towards the core orbit where it is merged and debunched into the core orbit
- Momentum stack 3-6 Booster batches

1st batch is injected onto the injection orbit

 $\mathbf{1}^{\text{st}}$ batch is accelerated to the core orbit

2nd Batch is injected

E Prebys

28

Accumulator

- Momentum stack 1 to 6 booster batches
- > Adiabatically bunch at h=1- 4kV
 - 500ns gap for kicker
 - Some beam/halo cleaning in Acc and transfer
 - Adiabatic easier at $\gamma_{\rm T}\text{=}5.5$
- Transfer to Debuncher

• Debuncher

- h=1 90-degree phase rotation at fixed voltage
 - 40kV 0.007s
- Capture and store at h=4
 - + ~200 to 250 kV ~0.02s; σ_{τ} = 42ns
 - Beam halo cleaning also

Attractive Features of Debuncher

Production Region

- Axially graded 5 T solenoid captures pions and muons, transporting them toward the stopping target
- Cu and W heat and radiation shield protects superconducting coils from effects of 50kW primary proton beam

Detector Region

- Axially-graded field near stopping target to increase acceptance and reduce cosmic ray background
- Uniform field in spectrometer region to simplify momentum analysis
- Electron detectors downstream of target to reduce rates from $\boldsymbol{\gamma}$ and

Expected Sensitivity of the MECO Experiment

We expect ~ 5 signal events for 10⁷ s (2800 hours) running if $R_{\mu e}$ = 10 $^{-16}$

Contributions to the Signal Rate	Factor
Running time (s)	107
Proton flux (Hz) (50% duty factor, 740 kHz micropulse)	4 ×10 ¹³
$\boldsymbol{\mu}$ entering transport solenoid / incident proton	0.0043
μ stopping probability	0.58
$\boldsymbol{\mu}$ capture probability	0.60
Fraction of $\boldsymbol{\mu}$ capture in detection time window	0.49
Electron trigger efficiency	0.90
Fitting and selection criteria efficiency	0.19
Detected events for $R_{\mu e} = 10^{-16}$	5.0

Expected Background in MECO Experiment

expect ~ 0.45 background events for 10^7 s running with sensitivity of

5 signal events for $R_{\mu e}$ = 10⁻¹⁶

Source	Events	Comments
μ decay in orbit	0.25	S/N = 20 for $R_{\mu e}$ = 10 ⁻¹⁶
Tracking errors	< 0.006	
Radiative μ decay	< 0.005	
Beam e-	< 0.04	
μ decay in flight	< 0.03	Without scattering in stopping target
μ decay in flight	0.04	With scattering in stopping target
π decay in flight	< 0.001	
Radiative π capture	0.07	From out of time protons
Radiative π capture	0.001	From late arriving pions
Anti-proton induced	0.007	Mostly from π^-
Cosmic ray induced	0.004	Assuming 10-4 CR veto inefficiency
Total Background	0.45	Assuming 10 ⁻⁹ inter-bunch extinction

Fermilab PAC Review, Nov. 1-3, 2007