Mu2e Experiment*

Eric Prebys
For the Mu2e Collaboration

*A Letter of Intent to Search for Charged Lepton Flavor Violation in Nuclear Muon Capture
Goals of Experiment

• Initial Phase (MECO design, No Project X):
 - Exploit NOvA accelerator modifications and post-Run II availability of Accumulator and Debuncher rings to mount a $\mu \rightarrow e$ conversion experiment patterned after MECO
 - 4x10^{20} protons in ~2 years
 - Measure
 \[R_{\mu e} \equiv \frac{\Gamma(\mu^-\text{Al} \rightarrow e^-\text{Al})}{\Gamma(\mu^-\text{Al} \rightarrow \text{capture})} \]
 - Single event sensitivity of $R_{\mu e} = 2 \times 10^{-17}$
 - 90% C.L. limit of $R_{\mu e} < 6 \times 10^{-17}$
 - ANY signal = Beyond Standard Model physics

• Ultimate goal
 - Exploit Project X and improved muon transport to achieve dramatically increased sensitivity
 - If no signal: set limit $R_{\mu e} < 1 \times 10^{-18}$
 - If signal: measure target dependence, etc
Mu2e Collaboration

R.M. Carey, K.R. Lynch, J.P. Miller*, B.L. Roberts
Boston University

W.J. Marciano, Y. Semertzidis, P. Yamin
Brookhaven National Laboratory

Yu.G. Kolomensky
University of California, Berkeley

C.M. Ankenbrandt, R.H. Bernstein, D. Bogert, S.J. Brice, D.R. Broemmelsiek, D.F. DeJongh, S. Geer,
Fermi National Accelerator Laboratory

D. Dale, K.J. Keeter, J.L. Popp, E. Tatar
Idaho State University

P.T. Debevec, D.W. Hertzog, P. Kammel
University of Illinois, Urbana-Champaign

V. Lobashev
Institute for Nuclear Research, Moscow, Russia

D.M. Kawall, K.S. Kumar
University of Massachusetts, Amherst

R.J. Abrams, M.A.C. Cummings, R.P. Johnson, S.A. Kahn,
S.A. Korenev, T.J. Roberts, R.C. Sah
Muons, Inc.

R.S. Holmes, P.A. Souder
Syracuse University

University of Virginia

*Co-contact persons

Currently:
50 Scientists
11 Institutions

Fermilab PAC Review, Nov. 1-3, 2007

E Prebys
Search for Charged Lepton Flavor Violation (CLFV)

• The discovery of neutrino oscillations naturally raises the question:
 ➢ What is the rate of charged lepton flavor violation in nature?
• CLFV is a powerful probe of multi-TeV scale dynamics: complementary to direct collider searches
• Among various possible CLFV modes, rare muon processes offer the best combination of new physics reach and experimental sensitivity

Muon-to-Electron Conversion: $\mu+N \rightarrow e+N$

• Standard Model rate via Dirac neutrino mixing is too small to be observed ($\sim 10^{-52}$)
• Very common feature of Beyond Standard Model physics at much larger rates
• Similar to $\mu \rightarrow e\gamma$, with important advantages:
 ➢ No combinatorial background
 ➢ Sensitive to other types of BSM physics
 ➢ Relative rate depends on details of physics
Broadly Sensitive to New High Energy Dynamics

\[\frac{m_\mu}{(\kappa+1)\Lambda^2} \bar{\mu} R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_\mu e_L \left(\bar{u}_L \gamma^\mu u_L + \bar{d}_L \gamma^\mu d_L \right). \]

- At \(R_{\mu e} \sim 10^{-16} \) (first phase, this LOI), the sensitivity is already very compelling, well above the reach of colliders.
- At \(10^{-18} \) (potentially, with upgraded apparatus and higher muon flux), energy scales probed would be difficult to access by other means.
Specific Model Examples

SU(5) GUT Supersymmetry: $\kappa \ll 1$

- Leptoquarks
- Z-prime
- Compositeness
- Heavy neutrino

Littlest Higgs: $\kappa \approx 1$

Randall-Sundrum: $\kappa \approx 1$

- Examples with $\kappa \gg 1$ (no $\mu \to e\gamma$ signal):
 - Leptoquarks
 - Z-prime
 - Compositeness
 - Heavy neutrino
Previous muon decay/conversion limits (90% C.L.)

LFV μ Decay:

\[
\begin{align*}
\Gamma(\mu^- \rightarrow e^- \nu_e \bar{\nu}_\mu) &< 1.2 \times 10^{-2} \\
\Gamma(\mu^- \rightarrow e^-\gamma) &< 1.2 \times 10^{-11} \\
\Gamma(\mu^- \rightarrow e^-e^+e^-) &< 1.0 \times 10^{-12} \\
\Gamma(\mu^- \rightarrow e^-2\gamma) &< 7.2 \times 10^{-11}
\end{align*}
\]

High energy tail of coherent Decay-in-orbit (DIO)

\[
R_{\mu e} \equiv \frac{\Gamma(\mu^- Ti \rightarrow e^- Ti)}{\Gamma(\mu^- Ti \rightarrow \text{capture})} < 4.3 \times 10^{-12}
\]

- Rate limited by need to veto prompt backgrounds!
Mu2e (MECO) Philosophy

- Eliminate prompt beam backgrounds by using a primary beam with short proton pulses with separation on the order of a muon life time.

 \[\sim 100 \text{ ns} \quad \sim 1.5 \mu s \]

- Design a transport channel to optimize the transport of right-sign, low momentum muons from the production target to the muon capture target.

- Design a detector to strongly suppress electrons from ordinary muon decays.
Detector Layout

- Straw Tracker
- Muon Stopping Target
- Superconducting Transport Solenoid (2.5 T - 2.1 T)
- Superconducting Production Solenoid (5.0 T - 2.5 T)
- Collimators
- Superconducting Detector Solenoid (2.0 T - 1.0 T)
- Muon Beam Stop
- Crystal Calorimeter
- Proton Beam
- Pion Production Target
Beam Related Rates

- Cut ~700 ns after pulse to eliminate most serious prompt backgrounds.

Rate [MHz]
- Full time between proton pulses

Rate [kHz]
- Detection time interval

Graphical Elements
- beam electrons
- μ^- decay in flight
- μ-capture protons

Time with respect to proton pulse [ns]
- 0, 400, 800, 1200, 700, 900, 1100, 1300
Sensitivity

- $R_{\mu e} = 10^{-16}$ gives 5 events for 4×10^{20} protons on target

- 0.4 events background, half from out of time beam, assuming 10^{-9} extinction
 - Half from tail of coherent decay in orbit
 - Half from prompt

Coherent Decay-in-orbit, falls as $(E_e - E)^5$
Mu2e History

• 1997
 - MECO proposed for the AGS at Brookhaven
 - Approved, along with KOPIO, as part of RSVP program

• 1998-2005
 - Design refined
 - Frequent favorable reviews

• 2005
 - June: final reviews, very positive
 - Physics goals: HEPAP RSVP Subpanel
 - Cost and schedule: “Wojcicki Panel”
 - July: RSVP cancelled for financial reasons
 - MECO and KOPIO “charged” for entire cost of continued AGS operation.

• 2006
 - January: First informal meeting at BNL
 - September: First meeting at Fermilab

• 2007
 - June: Mu2e expression of interest submitted to Fermilab Directorate
 - August: First Mu2e collaboration meeting
 - October: Letter of Intent submitted to Directorate
Mu2e at Fermilab

• If the current suite of proton source upgrades is effective, there should be at least enough excess 8 GeV protons during the NOvA era to do an experiment with similar sensitivity to MECO in a reasonable amount of time.
 - The resonant operation of the 8 GeV Booster makes it impossible to directly generate the desired time structure.
 - There is a scheme to generate this time structure using the antiproton Accumulator and Debuncher rings, which will become available after the termination of the collider program.
 - This scheme requires only modest modifications beyond those planned for NOvA, with which it is fully compatible.
Preloading for NOvA

Recycler → MI transfer

Available for 8 GeV program

Roughly $6 \times (4 \times 10^{12} \text{ batch})/(1.33 \text{ s}) \times (2 \times 10^7 \text{ s/year}) = 3.6 \times 10^{20}$ protons per year available
Delivering Protons: “Boomerang” Scheme

- Deliver beam to Accumulator/Debuncher enclosure with minimal beam line modifications and *no civil construction*.
Present Operation of Debuncher/Accumulator

- Protons are accelerated to 120 GeV in Main Injector and extracted to pBar target
- pBars are collected and phase rotated in the “Debuncher”
- Transferred to the “Accumulator”, where they are cooled and stacked
- Not used for NOvA
Rebunching in Accumulator/Debuncher

- Momentum stack 6 Booster batches directly in Accumulator (i.e. reverse direction)
- Capture in 4 kV h=1 RF System. Transfer to Debuncher
- Phase Rotate with 40 kV h=1 RF in Debuncher
- Recapture with 200 kV h=4 RF system
 \[\sigma_t \sim 40 \text{ ns} \]
Resonant Extraction

- Exploit 29/3 resonance
- Extraction septum and Lambertson similar to Main Injector
 - Septum: 80 kV/1cm × 3m
 - Lambertson+C magnet ~0.8T × 3m

<table>
<thead>
<tr>
<th>Resonant Extraction Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic Energy (GeV)</td>
</tr>
<tr>
<td>Working tune (νₓ/νᵧ)</td>
</tr>
<tr>
<td>Resonance (νₓ)</td>
</tr>
<tr>
<td>Normalized acceptance (x/y πmm-mr)</td>
</tr>
<tr>
<td>Normalized beam emittance (πmm-mr)</td>
</tr>
<tr>
<td>β at electrostatic septum (m)</td>
</tr>
<tr>
<td>β at Lambertson (m)</td>
</tr>
<tr>
<td>β at harmonic quads (m)</td>
</tr>
<tr>
<td>Septum Position (mm/σ)</td>
</tr>
<tr>
<td>Septum gap/step size (mm)</td>
</tr>
<tr>
<td>Sextupole Drive Strength (T-m/m²)</td>
</tr>
<tr>
<td>Initial Tuneshift</td>
</tr>
<tr>
<td>Septum field (MV/m)</td>
</tr>
<tr>
<td>Septum length (m)</td>
</tr>
</tbody>
</table>
Beam Extinction

- Need 10^{-9}
- Get at least $\sim 10^{-3}$ from beam bunching
- Remainder from AC Dipole in beam line

- Working with Osaka (FNAL+US-Japan funds) to develop AC dipole design, as well as explore measurement options
Proposed Location

- Requires new building.
- Minimal wetland issues.
- Can tie into facilities at MiniBooNE target hall.
Cost and Time Scale

- A detailed cost estimate of the MECO experiment had been done just before it was cancelled*
 - Solenoids and cryogenics: $58M
 - Remainder of experimental apparatus: $27M
- Additional Fermilab costs have not been worked out in detail, but are expected to be on the order of $10M.
- Hope to begin Accelerator work along with NOvA upgrades
 - ~2010 (or 2011 if Run II extended)
- Based on the original MECO proposal, we believe the experiment could be operational within five years from the start of significant funding
 - Driven by magnet construction.
 - ~2014
- With the proposed beam delivery system, the experiment could collect the nominal 4×10^{20} protons on target in about one to two years, with no impact on NOvA
 - NOvA rate limited by Main Injector

*Costs in 2005 dollars, including contingency
Mu2e and Project X

• We have described the initial phase of mu2e, which is based on the proposed data sample of 4×10^{20} protons.
 ➢ 90% C.L. limit of $R_{\mu e} < 6 \times 10^{-17}$ (improvement over existing limit of more than 4 orders of magnitude).

• The Project X linac would provide roughly a factor of ten increase in flux.

• Slow extraction directly from Recycler ruled out by Project X Working Group
 ➢ Will need to load beam from Recycler to Accumulator as we are planning to do for Phase I.

• A preliminary scheme to exploit this additional flux will be included in our proposal.
Mu2e and Muon Collider/Neutrino Factory

• There are a number of synergies between this project and muon cooling efforts
 - The Debuncher beam could be extracted in a single turn to produce the short, intense bunch needed by muon production experiments
 - Muon cooling studies have increased the understanding of solenoidal transport.
 - It is possible that a “helical cooling channel”, of the sort envisioned for muon cooling, could generate a significantly higher muon yield for this experiment.

• We will investigate these in more detail for the proposal.

A combination of increased flux from Project X and a more efficient muon transport line could potentially result in a sensitivity as low as 10^{-18}
Experimental Challenges for Increased Flux

- Achieve sufficient extinction of proton beam.
 - Current extinction goal directly driven by total protons
- Upgrade target and capture solenoid to handle higher proton rate
- Improve momentum resolution for the ~100 MeV electrons to reject high energy tails from ordinary DIO electrons.
- Operate with higher background levels.
- Manage high trigger rates
 - All of these efforts will benefit immensely from the knowledge and experience gained during the initial phase of the experiment.
- If we see a signal at a lower flux, can use increased flux to study in detail
 - Precise measurement of $R_{\mu e}$
 - Target dependence
 - Comparison with $\mu \rightarrow e\gamma$ rate
Required Resources for Proposal

- \(\sim \$100K \) of FESS time
 - for a preliminary cost estimate of the experimental facility and beam line civil construction
- \(\sim 1/2 \) FTE beam line design expert
 - to produce a preliminary design of the primary proton line, including extinction channel
- \(\sim 1/2 \) FTE of ES&H radiation safety expert
 - to help us produce a plan to deal with the increased flux in the pBar enclosure (VERY important!)
- \(\sim 1/2 \) FTE of a TD magnet expert
 - to evaluate the MECO magnet design, and advise of possible improvements.
- A dedicated postdoc and guest scientist position
 - Focus on Monte Carlo work.
 - Could also be supplemented with PPD resources
Conclusions

• The mu2e experiment is an opportunity for Fermilab to make an important measurement
 ➢ In the initial phase (without project X) we would either
 • Reduce the limit for $R_{\mu e}$ by more than four orders of magnitude
 ($R_{\mu e} < 6 \times 10^{-17}$ @ 90% C.L.)
 OR
 • Discover unambiguous proof of Beyond Standard Model physics
 • This experiment benefits greatly from both the voluminous work done for the MECO proposal and by fortuitous configuration and availability of Fermilab accelerator components.
 • With a combination of Project X and/or improved muon transport, we could either
 ➢ Extend the limit by up to two orders of magnitude
 OR
 ➢ Study the details of new physics
Backup Slides
Momentum Stacking

- Inject a newly accelerated Booster batch every 67 ms onto the low momentum orbit of the Accumulator.
- The freshly injected batch is accelerated towards the core orbit where it is merged and debunched into the core orbit.
- Momentum stack 3-6 Booster batches.

Energy

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>T=0</td>
<td>1st batch is injected onto the injection orbit</td>
</tr>
<tr>
<td>T<66ms</td>
<td>1st batch is accelerated to the core orbit</td>
</tr>
<tr>
<td>T=67ms</td>
<td>2nd Batch is injected</td>
</tr>
<tr>
<td>T<133ms</td>
<td>2nd Batch is accelerated</td>
</tr>
<tr>
<td>T=134ms</td>
<td>3rd Batch is injected</td>
</tr>
</tbody>
</table>
Rebunching Scheme

• Accumulator
 - Momentum stack 1 to 6 booster batches
 - Adiabatically bunch at $h=1$ - 4kV
 - 500ns gap for kicker
 - Some beam/halo cleaning in Acc and transfer
 - Adiabatic easier at $\gamma_t=5.5$
 - Transfer to Debuncher

• Debuncher
 - $h=1$ 90-degree phase rotation at fixed voltage
 - 40kV - 0.007s
 - Capture and store at $h=4$
 - ~200 to 250 kV $\sim0.02s$; $\sigma_\tau=42$ns
 - Beam halo cleaning also
Attractive Features of Debuncher

- Large Acceptance
- Low chromaticity
- Long, dispersion-free segments
- Lots of open straight sections after cooling hardware removed
- Problem: Getting protons there
Production Region

- Axially graded 5 T solenoid captures pions and muons, transporting them toward the stopping target.

- Cu and W heat and radiation shield protects superconducting coils from effects of 50kW primary proton beam.
Transport Solenoid

- Curved solenoid eliminates line-of-sight transport of photons and neutrons
- Curvature drift and collimators sign and momentum select beam
- dB/ds < 0 in the straight sections to avoid long transit time trajectories
Detector Region

- Axially-graded field near stopping target to increase acceptance and reduce cosmic ray background
- Uniform field in spectrometer region to simplify momentum analysis
- Electron detectors downstream of target to reduce rates from γ and neutrons
Expected Sensitivity of the MECO Experiment

We expect ~ 5 signal events for 10^7 s (2800 hours) running if $R_{\mu e} = 10^{-16}$

<table>
<thead>
<tr>
<th>Contributions to the Signal Rate</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running time (s)</td>
<td>10^7</td>
</tr>
<tr>
<td>Proton flux (Hz) (50% duty factor, 740 kHz micropulse)</td>
<td>4×10^{13}</td>
</tr>
<tr>
<td>μ entering transport solenoid / incident proton</td>
<td>0.0043</td>
</tr>
<tr>
<td>μ stopping probability</td>
<td>0.58</td>
</tr>
<tr>
<td>μ capture probability</td>
<td>0.60</td>
</tr>
<tr>
<td>Fraction of μ capture in detection time window</td>
<td>0.49</td>
</tr>
<tr>
<td>Electron trigger efficiency</td>
<td>0.90</td>
</tr>
<tr>
<td>Fitting and selection criteria efficiency</td>
<td>0.19</td>
</tr>
<tr>
<td>Detected events for $R_{\mu e} = 10^{-16}$</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Expected Background in MECO Experiment

We expect ~ 0.45 background events for 10^7 s running with sensitivity of ~ 5 signal events for $R_{\mu e} = 10^{-16}$

<table>
<thead>
<tr>
<th>Source</th>
<th>Events</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ decay in orbit</td>
<td>0.25</td>
<td>$S/N = 20$ for $R_{\mu e} = 10^{-16}$</td>
</tr>
<tr>
<td>Tracking errors</td>
<td>< 0.006</td>
<td></td>
</tr>
<tr>
<td>Radiative μ decay</td>
<td>< 0.005</td>
<td></td>
</tr>
<tr>
<td>Beam e^-</td>
<td>< 0.04</td>
<td></td>
</tr>
<tr>
<td>μ decay in flight</td>
<td>< 0.03</td>
<td>Without scattering in stopping target</td>
</tr>
<tr>
<td>μ decay in flight</td>
<td>0.04</td>
<td>With scattering in stopping target</td>
</tr>
<tr>
<td>π decay in flight</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>Radiative π capture</td>
<td>0.07</td>
<td>From out of time protons</td>
</tr>
<tr>
<td>Radiative π capture</td>
<td>0.001</td>
<td>From late arriving pions</td>
</tr>
<tr>
<td>Anti-proton induced</td>
<td>0.007</td>
<td>Mostly from π^-</td>
</tr>
<tr>
<td>Cosmic ray induced</td>
<td>0.004</td>
<td>Assuming 10^{-4} CR veto inefficiency</td>
</tr>
<tr>
<td>Total Background</td>
<td>0.45</td>
<td>Assuming 10^{-9} inter-bunch extinction</td>
</tr>
</tbody>
</table>