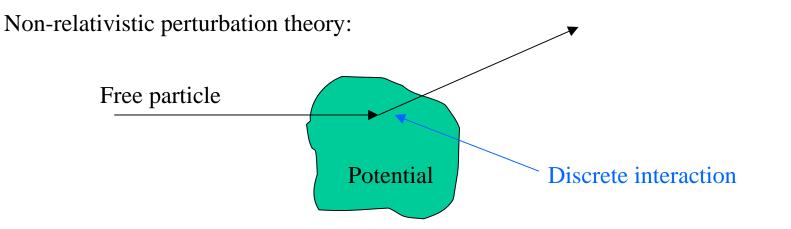
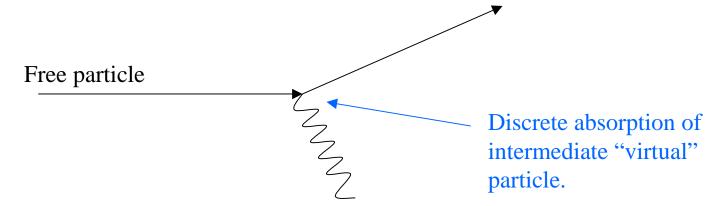
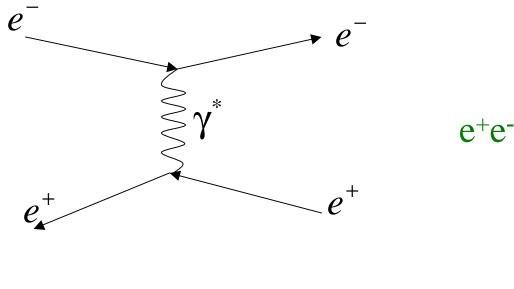
Experimental Techniques in Particle Physics

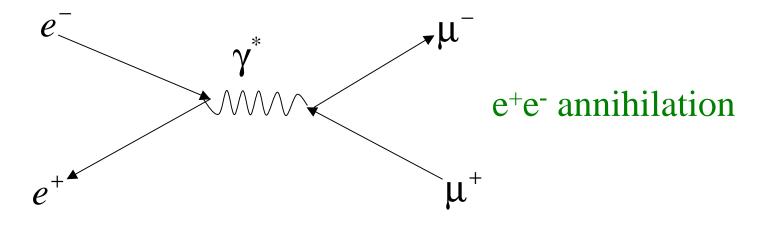
Eric Prebys


- **Particle** the propagation of momentum, energy, and other "information" through space-time.
- Force something which changes a particle in some way (sometimes to a different particle).

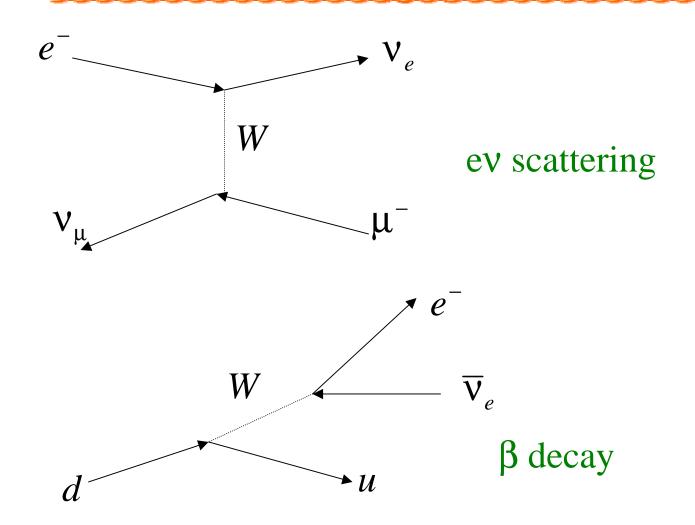

The Standard Model – The Fundamental Particles

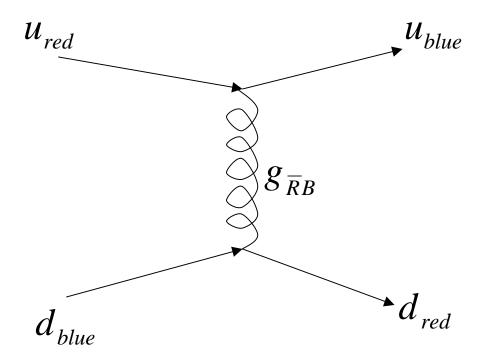
FERMIONS Leptons spin = 1/2			matter constituents spin = 1/2, 3/2, 5/2, Quarks spin = 1/2				
Pe electron neutrino electron	<1×10 ⁻⁸ 0.000511	-0 -1	U up C down	0.003 0.006	2/3 -1/3		
μ_{μ} muon μ neutrino μ muon	<0.0002 0.106	0 -1	C charm S strange	1.3 0.1	2/3 -1/3		
${f P}_T$ tau neutrino ${f au}$ tau	<0.02 1.7771	0 -1	t top b bottom	175 4.3	2/3 -1/3		


Relativistic perturbation theory "Feynman Diagram":


The Intermediate Vector Bosons (Mediators of Force)

	BOS	ONS	force carr spin = 0,		
Unified Electroweak spin = 1			Strong (color) spin = 1		
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge
γ photon	0	ä	g gluon	0	0
W-	80.4	-1			
W+	80.4	+1			
Z ⁰	91.187	0			




e⁺e⁻ scattering

PROPERTIES OF THE INTERACTIONS

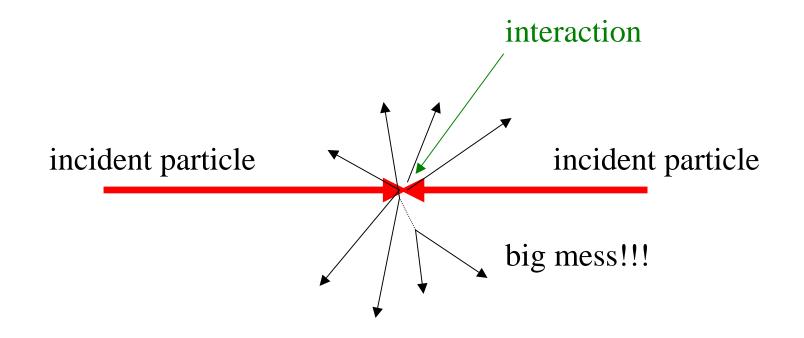
Interaction	Gravitational	Strong			
rioperty	Gravitational	Fundamental	Residual		
Acts on:	Mass – Energy	Color Charge	See Residual Strong Interaction Note		
Particles experiencing:	All	Quarks, Gluons	Hadrons		
Particles mediating:	Graviton (not yet observed)	Gluons	Mesons		
Strength relative to electromag $\begin{cases} 10^{-18} \text{ m} \\ \text{for two u quarks at:} \\ 3 \times 10^{-17} \text{ m} \end{cases}$ for two protons in nucleus	10 ⁻⁴¹ 10 ⁻⁴¹ 10 ⁻³⁶	25 60 Not applicable to hadrons	Not applicable to quarks 20		
Property	Weak (Electi	Electromagn wweak)	etic		
Acts on:	Flavor	Electric Charg	je -		
Particles experiencing:	Quarks, Leptons	Electrically char	ged		
Particles mediating:	W+ W- Z ⁰	γ			
Strength relative to electromag (10 ⁻¹⁸ m	0.8	1			
for two u quarks at: 3×10 ⁻¹⁷ m	10-4	1			
for two protons in nucleus	10 ⁻⁷	1			

- Quarks come in three "colors": red, green, blue
- Combine to form "colorless" (white) particles:
 - Three quarks (or antiquarks), one of each color \Rightarrow "Baryons"
 - A quark of one color and an anti-quark of the associated anti-color \Rightarrow "Mesons"

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. There are about 120 types of baryons.			ववव	18		Meson ons are bo about 14	sonic hadn			
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin	Symbol	Name	Quark content	Electric charge	Mass GeV/c ²
р	proton	uud	1	0.938	1/2	π^+	pion	ud	+1	0.140
p	anti- proton	ūūd	-1	0.938	1/2	к-	kaon	sū	-1	0.494
n	neutron	udd	0	0.940	1/2	ρ^+	rho	ud	+1	0.770
Λ	lambda	uds	0	1.116	1/2	B ⁰	8-zero	db	0	5.279
Ω-	omega	SSS	-1	1.672	3/2	η_{c}	eta-c	ςΣ	0	2 .980

Physics 312, April 24th 2000

- What is the origin of mass?
 - The standard model diverges if we just "plug-in" a mass for all the particles.
 - An *effective* mass comes in through the interaction with a pervasive field with a non-zero vacuum expectation value.
 - Perturbations about this vacuum give us a "Higgs Particle", which probably has a mass 100 GeV< m < 1TeV
- What is the nature of CP violation?
 - The physics of matter in a right-handed universe is *almost* the same as that for anti-matter in a left-handed universe.
 - This small difference is *accomodated* in the standard model by complex terms in the quark mixing matrix.
 - This must be firmly established, and if true, the associated parameters must be measured.



- Do neutrinos have mass/do they mix?
 - In the Standard Model, all neutrino masses are zero by definition.
 - There is growing evidence that neutrinos do have mass.
 - Solar neutrino deficit.
 - Atmospheric neutrino "problem".
 - LSND result.
 - If true this could explain the "dark matter" in the universe, at least partially.
 - Must be verified, and if true, the details must be studied.

- What lies beyond?
 - The standard model eventually diverse
 - There is a philosophical (aesthetic? religious?) impulse to unify the quark and the lepton sectors, as well as include gravity.
 - Supersymmetry (SUSY):
 - Every fermion is associated with a boson.
 - Predicts a veritable zoo of new particles, the lightest of which should have m<2TeV.
 - String theory
 - All particles are states of fundamental objects (strings)
 - Supersymmetry is a consequence.
 - As yet, absolutely no experimental evidence for either of these theories. Must keep looking.

- Almost all of the particles of most interest to us are very unstable; we must detect them *indirectly* through their decay products.
- Everything in the universe ultimately decays to

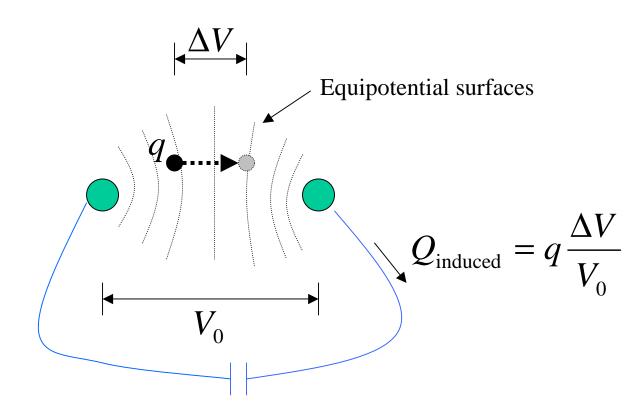
$$\gamma, e^-, p, \nu_e, \nu_\mu, \nu_\tau + \text{anti - particles}$$

[∼] CANNOT be individually detected

 In addition, the following particles live long enough (c t>1m) to be detected *directly*:


$$n, \pi^+, \mu^-, K^+, K_L + \text{ anti - particles}$$

- Charged Particle Tracking
 - Precision: decay position determination.
 - Spectroscopy: measure momentum in conjunction with magnetic field.
 - Projection: match information from different detectors.
- Calorimetry
 - Electromagnetic: measure energy of photons, identify electrons.
 - Hadronic: measure energy of neutral hadrons, identify types of charged particles.
- Particle Identification
 - Indirect: based on interaction characteristics
 - Direct: determine mass by measuring velocity
 - dE/dX
 - Time-of-flight
 - Cerenkov Radiation

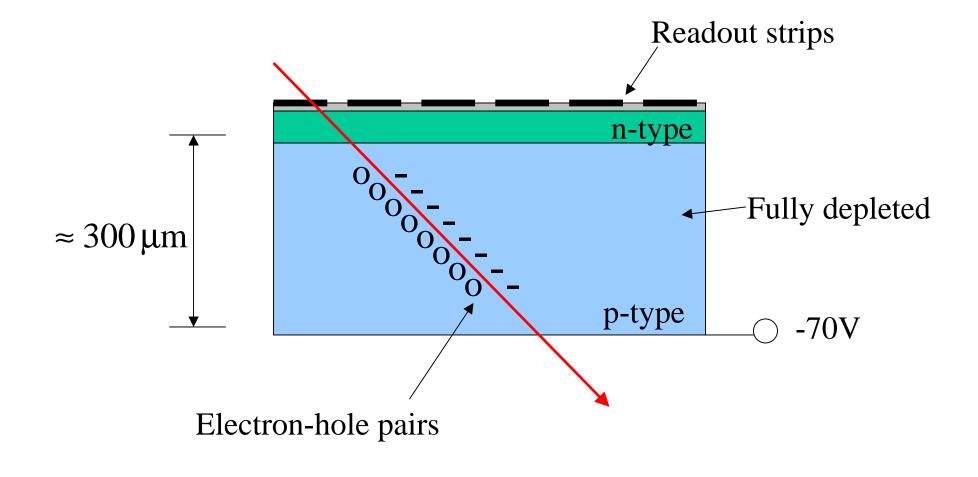

• As charged particles traverse matter, they deposit energy according to the Bethe-Bloch equation:

Physics 312, April 24th 2000

• Ultimately almost all types of detectors work through the detection of *ionized charges*, which *induce* electrical signals as they *move*.

•A charged particle ionizes gas molecules as it passes.

Track


•This ionized charge drifts toward a wire which is held a relatively positive potential. •As the ionized charge gets close to the wire, the rapidly increasing field results in an *avalanche* of multiple ionization.

•The motion of the resulting *ions* away from the wire *induces* a signal.

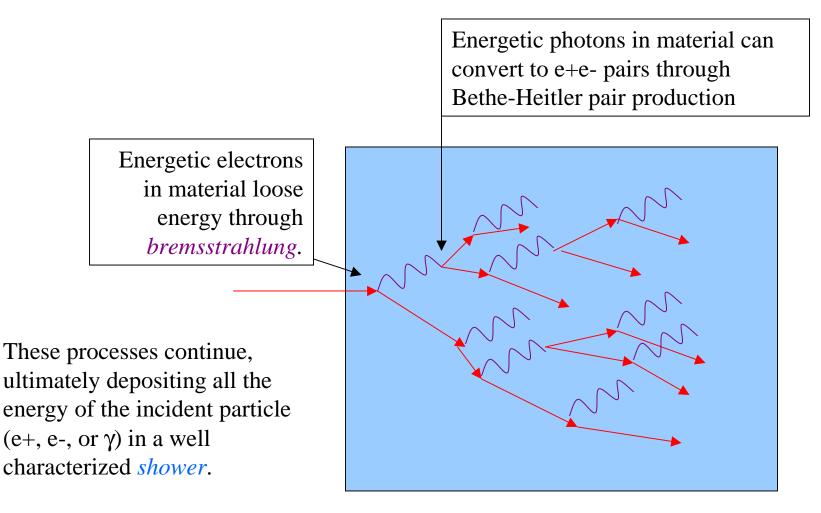
•The total signal is *proportional* to the total ionized charge.

•The *time* of the signal can accurately measure the *position* of the track.

Typical Charged Tracking Resolution

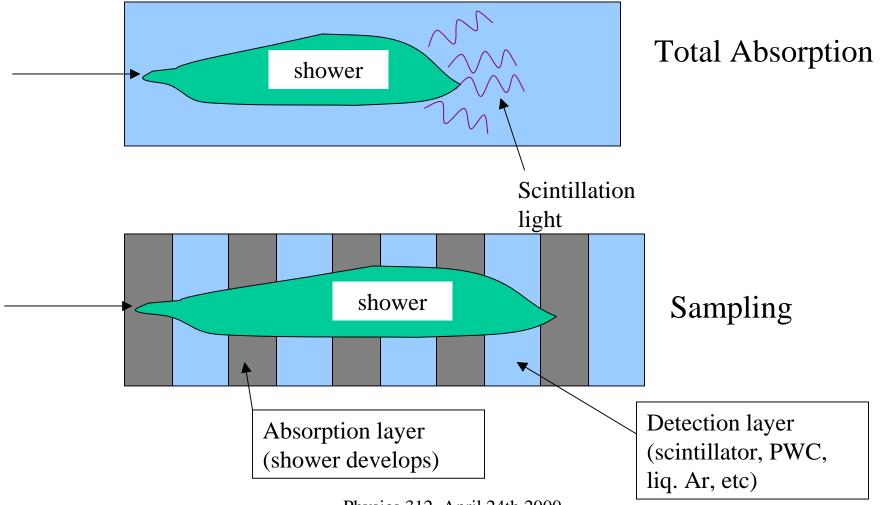
Detector Type	Accuracy (rms)	Resolution Time	Dead Time
Bubble chamber	10 to 150 µm	1 ms	50 ms^4
Streamer chamber	$300 \ \mu m$	2 µs	100 ms
Proportional chamber	$\geq 300 \; \mu \mathrm{m}^{b,c}$, 50 ns	200 ns
Drift chamber	50 to $300 \ \mu m$	2 ns^d	100 ns
Scintillator	0	150 ps	10 ns
Emulsion	$1 \ \mu \mathrm{m}$	100 100	8
Silicon strip	$rac{\mathrm{pitch}}{3 \mathrm{ to } 7}^{e}$	f	f
Silicon pixel	$2 \ \mu \mathrm{m}^g$	f	f

^{*a*} Multiple pulsing time.

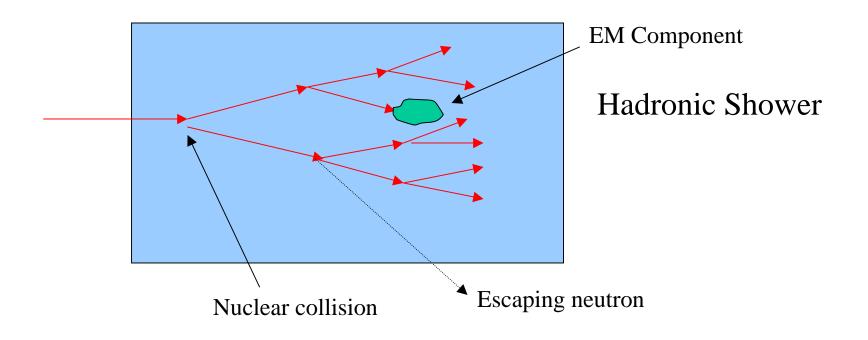

^b 300 μ m is for 1 mm pitch.

 $^c\,$ Delay line cathode readout can give $\pm 150\,$ μm parallel to anode wire.

 d For two chambers.


- ^e The highest resolution ("7") is obtained for small-pitch detectors ($\leq 25 \ \mu m$) with pulse-height-weighted center finding.
- ^f Limited at present by properties of the readout electronics. (Time resolution of ≤ 15 ns is planned for the SDC silicon tracker.)
- $^g\,$ Analog readout of 34 $\mu{\rm m}$ pitch, monolithic pixel detectors.

There are basically two types of EM calorimeters...

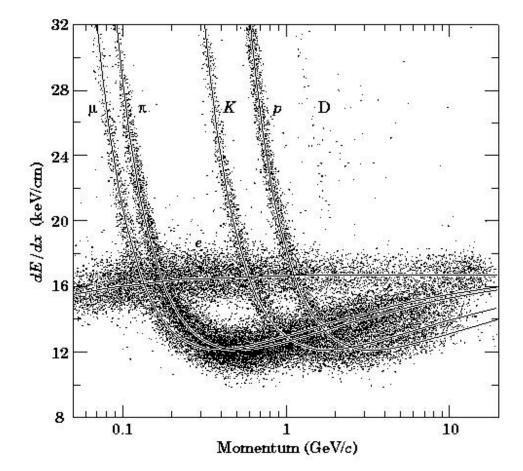

Physics 312, April 24th 2000

Electromagnetic Calorimeter Resolution

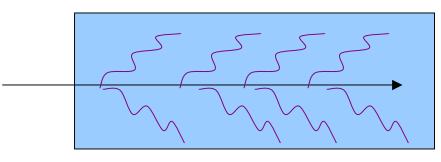
Detector	Resolution
NaI(Tl) (Crystal Ball [52]; 20 X_0)	$2.7\%/E^{1/4}$
Lead glass (OPAL [53])	$5\%/\sqrt{E}$
Lead-liquid argon (NA31 [54]; 80 cells: 27 X_0 , 1.5 mm Pb + 0.6 mm A1 + 0.8 mm G10 + 4 mm LA)	$7.5\%/\sqrt{E}$
Lead-scintillator sandwich (ARGUS [55], LAPP-LAL [56])	$9\%/\sqrt{E}$
Lead-scintillator spaghetti (CERN test module) [57]	$13\%/\sqrt{E}$
Proportional wire chamber (MAC; 32 cells: 13 X_0 , 2.5 mm typemetal + 1.6 mm Al) [58]	$23\%/\sqrt{E}$

Energy in GeV

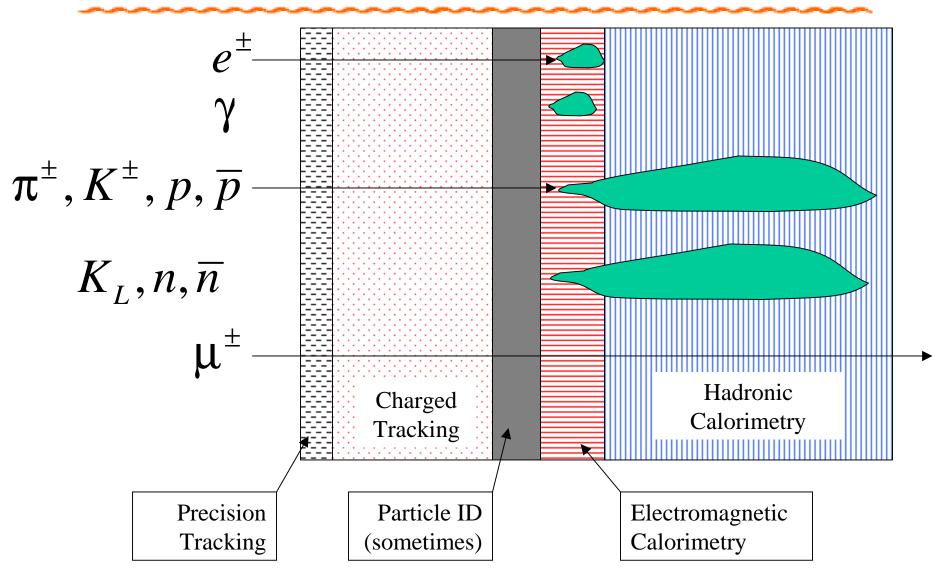
•Based on nuclear interactions.

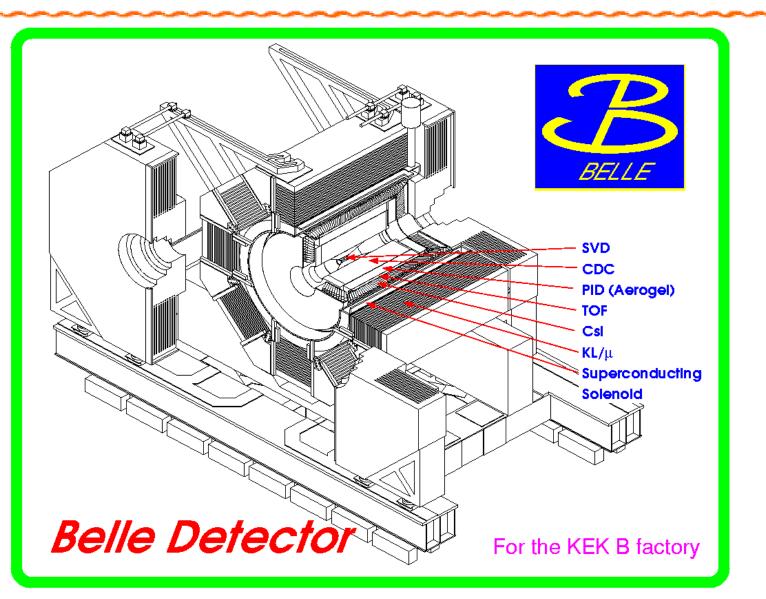

- •Longer and messier than EM showers.
- •Always use sampling calorimeters (e.g. steel+scintillator)
- •Very good resolution would be 50% / \sqrt{E}

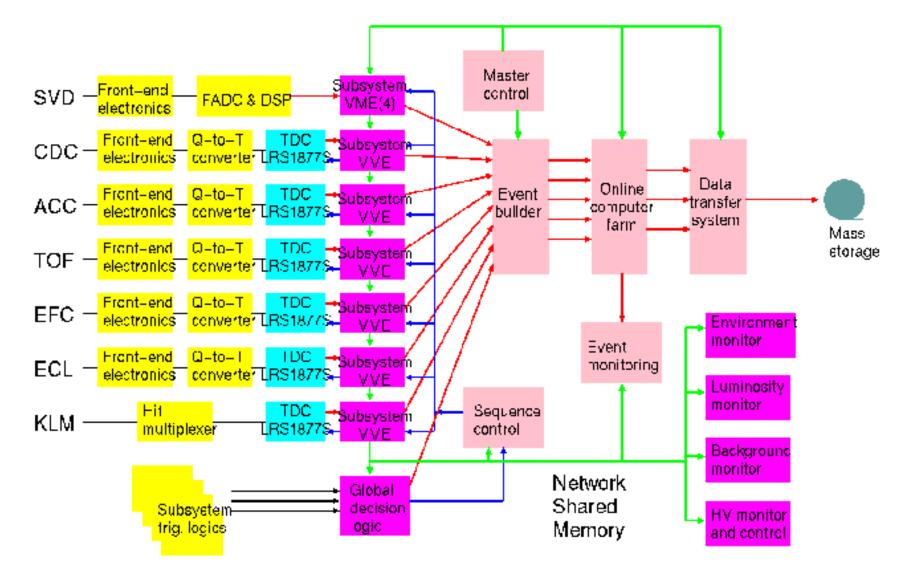
- We can broadly distinguish particles by how they interact (we'll discuss this in a minute).
- But particles of the same time class (eg charged hadrons) must be distinguished by their different *masses*.
- We determine the mass by independently measuring the *momentum* and *velocity*.
- One way to do this is to directly measure the time of flight
 - Can usually measure time to better than 100 ps
 - In a central detector, this can separate π and K up to about 1 GeV
- In addition, there are common *indirect* ways to measure velocity.

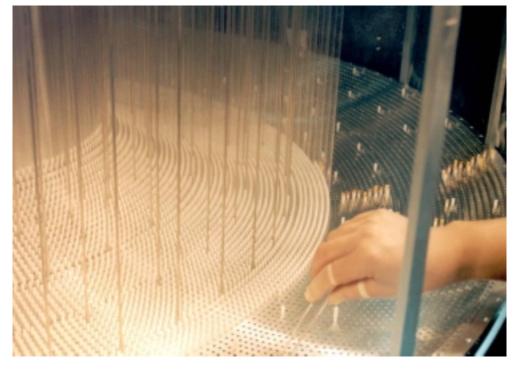


- Recall that as particles traverse matter, the energy they deposit is dependent only on the *velocity*.
- ⇒particles of the same momentum will deposit different amounts of energy if their masses are different.
- This can be easily measured with proportional wire chambers.


• A charged particle which is traveling faster than the speed of light in a particular medium will radiate its energy in the form of photons in a cone whose angle is $\cos \theta = \frac{1}{2}$

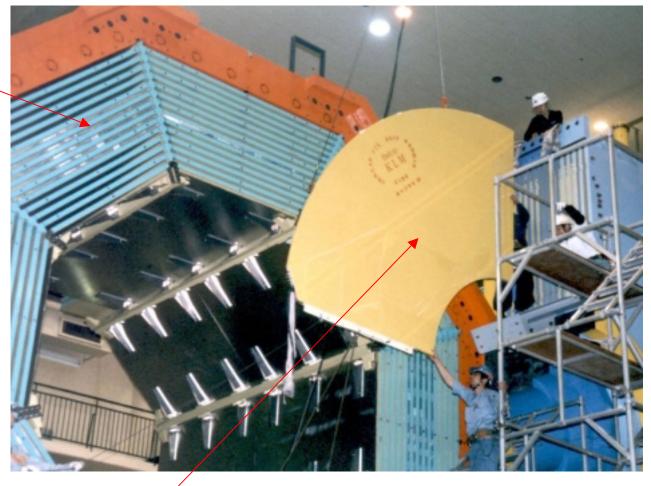

- The existence of such light can be used to *discriminate two particles* of different masses for a range of momenta (threshold Cerenkov detector).
- OR the angle can be *directly measured* (more accurate but more difficult).


General Detector Layout and Classes of Particles

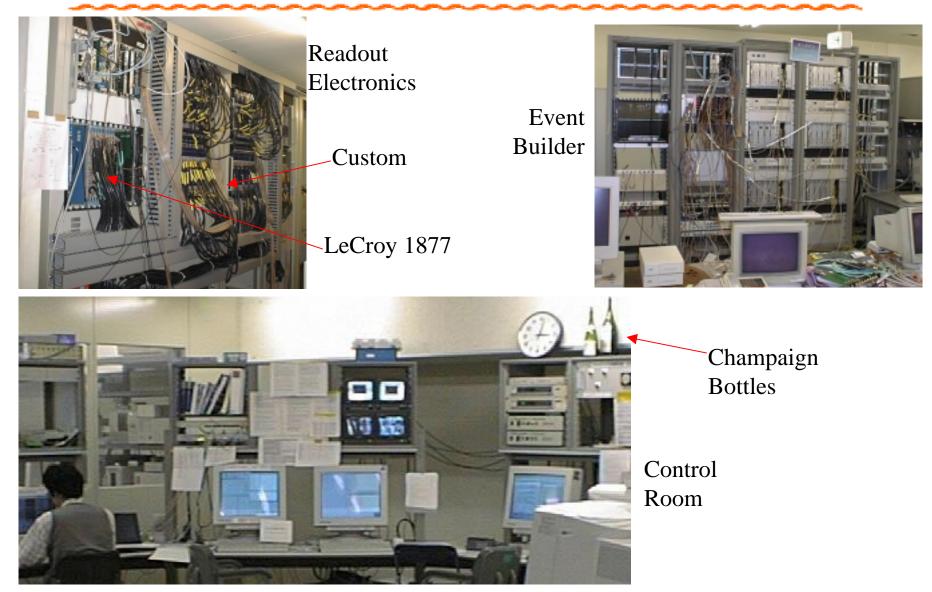


SVD

Central Drift Chamber

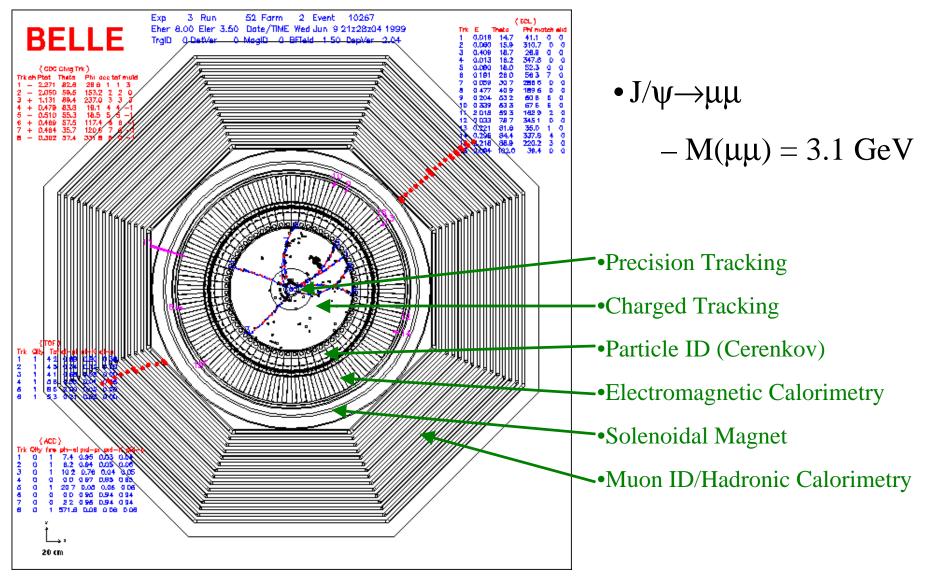

Barrel Detector

Module Assembly


Barrel Module -

Endcap Module

Pictures (DAQ/Control)



Physics 312, April 24th 2000

Physics 312, April 24th 2000