The Proton Source (mostly Booster) in the "Collider Era"

Eric Prebys

February 3, 2003

Outline:

- General:
 - Current and expected demands on the Booster
 - Limiting factors
 - Proton economics
- Longevity issues
 - non-radiation related
 - radiation related
- Planned and proposed long-term projects.
 - Low energy Linac upgrade?
 - Booster collimation system.
 - New Booster RF system.
 - New Booster kickers.
 - New Booster injection bump (ORBUMP) magnets.
 - Booster cogging system.

The "Run II Era"

- The proton source is very close the the specifications in the Run II Handbook.
- Although it's the highest priority, support of collider operations is a relatively minor facet of life in the proton source.
- Proton source activities are dominated by the current and projected needs of the neutrino program (MiniBooNE+NuMI+??)
- Whatever a WBS chart may say, there's not a separate proton source for RunII, MiniBooNE, NuMI, etc.

8 GeV Proton Goals and Performance

· . . .

Parameter	Typical Current	Run II Handbook	Comments		
	Performance	Goal			
Pbar Stacking Pulse Intensity	4.7E12/batch* = 5.9E10/bunch	>5E12/batch	Limited by Booster efficiency and residual radiation concerns		
Hourly Intensity	0.8E16 Run II	1.2E16	Limited by Pbar cooling cycle time		
Transverse Emittance	15-17 π mm-mr	$<15 \ \pi \mathrm{mm-mr}$			
Collider filling Intensity	7 bunches @ 5.5 - 5.9E10 / bunch	5-7 bunches @ 6E10 / bunch			
Longitudinal Emittance	0.1 - 0.15 eV-sec / bunch	<0.1 eV-sec / bunch	Better understanding of transition crossing and improved longitudinal dampers		

* One batch ~80 bunches (harmonic 84 with 4 bunch gap)

Some Cold Hard Facts about the Proton Source

- Running as we are now, the Booster can deliver a little over 1E20 protons per year – this is about a factor of four over typical stacking operations, and gives MiniBooNE about 20% of their baseline.
- NuMI will come on line in 2005, initially wanting about half of MiniBooNE's rate, but hoping to increase their capacity through Main Injector Improvements *until it is equal to MiniBooNE*.
- Whatever the lab's official policy, there will be great pressure (and good physics arguments) for running MiniBooNE and NuMI *at the same time*.
- -> By 2006 or so, the Proton Source will be called upon to deliver 10 times what it is delivering now.
- At the moment, there is NO PLAN for achieving this, short of a complete replacement!

Limitations to Total Booster Flux

- Total protons per batch: 4E12 with decent beam loss, 5E12 max.
- Average rep rate of the machine:
 - Injection bump magnets (7.5Hz)
 - RF cavities (7.5Hz, maybe 15 w/cooling)
 - Kickers (15 Hz)
 - Extraction septa (15Hz after Jan. shutdown)
- Beam loss
 - Above ground:
 - Shielding
 - Occupancy class of Booster towers
 - Tunnel losses
 - Component damage

• Activiation of high maintenance items (particularly RF cavities)

Of particular interest to NUMI

Our biggest concern

Proton Timelines

- Everything measured in 15 Hz "clicks"
- Minimum Main Injector Ramp = 22 clicks = 1.4 s
- MiniBoone batches "sneak in" while the MI is ramping.
- Cycle times of interest
 - Min. Stack cycle: 1 inj + 22 MI ramp = 23 clicks = 1.5 s
 - Min. NuMI cycle: 6 inj + 22 MI ramp = 28 clicks = 1.9 s
 - Full "Slipstack" cycle (total 11 batches):

```
6 inject
+ 2 capture (6 -> 3)
+ 2 inject
+ 2 capture (2 -> 1)
+ 2 inject
+ 2 capture (2 -> 1)
+ 1 inject
+ 22 M.I. Ramp
```

39 clicks = 2.6 s

Summary of Proton Ecomomics

MiniBooNE baseline $\approx 5E20 \text{ p/year}$

Booster Hardware Issues						Radiation Issue					ssues	
	Scenario	enario Cycle Batches			Rep rate Protons delivered (x			ed (x E12 pps)*	pps)* Total			
		(CIICKS)	prepulse	Stack	MB	NuMI	(ave. Hz)	Stack	MB	NuMI	E12	/RunII
	Stack	23	2	1			2.0	3.3	0.	0.	3.3	1.
	Stack/MB	23	2	1	8		7.2	3.3	26.1	0.	29.3	9.0
	Stack/NuMI	28	2	1		5	4.3	2.7	0.	13.4	16.1	4.9
/	Stack/NuMI/MB	28	2	1	10	5	9.6	2.7	28.8	13.4	42.9	13.1
	Slipstack/NuMI	39	2	2		9	5.0	3.8	0.	17.3	21.2	6.5
	Slipstack/NuMI/MB	39	2	2	13	9	10.0	3.8	25.0	17.3	46.2	14.2

NUMI "baseline" = 13.4E12 pps x 2E7 s/year ≈ 2 r

Right now we're at roughly 1/5 of the MiniBooNE baseline

*assuming 5E12 protons per batch

Typical Booster Cycle

Various Injected Intensities

Beam Loss Intensity Sensitivity

Booster Tunnel Radiation Levels

Activation in Booster Tunnel (6 hour cooldown)

Standard Locations (some contact, some 1ft)

- On a recent access
 - The people doing the radiation survey got about 20 mR.
 - Two technicians received 30 mR doing a minor HV cable repair.
 - We're at (or past??) the absolute limit on our overall activation

Longevity Issues (non-radiation)

- Linac
 - 7835 Power Amlifiers: will supply meet demand? Will supply dry up?
 - Modulator switch tubes: have all we're ever going to have. Is it enough?
- Booster
 - GMPS (upgraded, OK)
 - Transformers (serviced, OK)
 - Vacuum system (being update, finished 2003)
 - MP02 extraction septum and power supply (new, OK)
 - MP01 extraction septum and power supply
 - Will be replaced with duplicates of MP02.
 - Injection bump (ORBUMP): discussed shortly
 - Kicker PS charging cables
 - Run three times over spec
 - Fail at a rate of about 1/month, sometimes repairable.
 - Ordering spare cable.
 - Evaluating improved design (better cable, LCW-filled heliac, etc)

Longevity Issues (non-radiation, cont'd)

- Low voltage power supplies, in particular Power 10 Series:
 - Unreliable, some no longer serviced.
 - Starting search for new supplier and evaluate system to minimize number of different types.
 - Probably a few \$100K to upgrade system.
- RF Hardware
 - (original) Copper tuner cooling lines are beginning to spring leaks. Difficult to repair because they're hot.
- High Level RF
 - More or less original.
 - Our highest maintenance item.
 - Will probably last, BUT expensive to maintain.
 - John Reid and Ralph Pasquinelli feel a new solid state system would pay for itself (\$5.5M) in about four years.
- Low Level RF
 - Many old modules, some without spares, some without drawings.
 - An upgrade plan in place.
 - Not expensive, but NEED people.

Longevity Issues (radiation related)

- We've seen failures in ion pump HV lines -> planning to replace.
- Hoses on beam valves will be replaced with copper or stainless.
- Looking at other miscellaneous cabling and hoses.
- Recent kicker magnet failure appeared to be related to radiation damage.
- Main magnet insulation?
 - Haven't had a failure in 30 years, but...
 - Have placed "dose tabs" around the ring to get an idea of the real radiation dose to evaluate danger.

- Most of the Linac longevity issues center around the 200 MHz RF hardware.
- Possible to replace Preacc with a series of RFQ's which would directly feed a 400 MHz klystron-driven low energy linac (a la SNS).
- This is a big ticket item, but could be a step to a new proton driver.

Booster Collimator System

- Unshielded copper secondary collimators were installed in summer 2002, with a plan to shield them later.
- Due the the unexpected extent of the shielding and the difficulty of working in the area, the design was ultimately abandoned as unacceptable.
- Collimators were removed during the January shutdown.
- A new collimator system is being designed with steel secondary jaws fixed within a movable shielding body.
- Hope to have then ready in \sim 3 months.

New RF System?

• The existing RF cavities form the primary aperture restriction (2 $\frac{1}{4}$ " vs. 3 $\frac{1}{4}$ ").

• They are high maintenance, so their activation is a worry.

New RF System (cont'd)

- There is a plan for a new RF system with 5" cavities:
 - Powered prototype built
 - Build *two* vacuum prototypes by the summer shutdown with substantial machining done at universities.
 - Evaluate these and procede (hopefully?) with full system.
- Total cost: \$5.5M cavities + \$5.5M power supplies (power supplies would pay for themselves in a few years)
- Is it worth it? On of the questions for the study group is how much improvement we might expect.

Injection Dogleg (ORBUMP)

- The current injection bump dogleg (ORBUMP) magnets can ramp at 7.5 Hz, with a substantial temperature rise.
- Need to go to 12 to support MiniBooNE and NuMI.
- 2 spares for the 4 (identical) magnets. Most likely failure mode probably repairable.
- New design underway, but needs much more attention.
- Can new design incorporate injection improvements??
- Some power supply issues as well:
 - One full set of replacement SCR's for the switch network.
 - New switchbox being designed, but needs attention (or order more spare SCR's).
 - No spare for charge recovery choke.

Extraction Kickers

- Each extraction region requires four extraction kickers in the long straight section prior to extraction.
- After these RF cavities, these are the next aperture restriction (2.5" ID).
- Recently, a kicker failed with signs of radiation damage, and we were forced to swap in our only spare (really our tune measurement pinger).
- Plan:
 - Use spare and recovered ferrites to build two spares on a very short timescale.
 - Order ferrites to build at least two additional spares.
 - Investigate a new, larger aperture design.

Multibatch Timing

- In order to Reduce radiation, a "notch" is made in the beam early in the booster cycle.
- Currently, the extraction time is based on the counted number of revolutions (RF buckets) of the Booster. This ensures that the notch is in the right place.
- The actual time can vary by > 5 usec!
- This is not a problem if booster sets the timing, but it's incompatible with multi-bunch running.
- We must be able to fix this total time so we can synchronize to the M.I. orbit.
- This is called "beam cogging".

Active cogging

• Detect slippage of notch relative to nominal and adjust radius of beam to compensate.

- Does not currently work at high intensities.
- Still do not really understand the problem.
- Needs to be solved by the time NuMI runs.

Simulation/Studies

- Historically, the booster has lacked a fundamental understanding of beam loss mechanisms.
- If (!!!) it is possible at all to go the the required beam flux, it will require some mitigation of beam loss.
- Recently, there has been an great increase in the involvement of the Beam Physics department in the Booster:
 - Space charge group (W. Chou, et al) has begun to focus on the Booster again.
 - Chuck Ankenbrandt has moved into Booster group as "Beam Physics Liaison" to help coordinate studies.
 - Starting to make quantitative comparisons between predictions and measurement.
- This is an ongoing effort, which will require at least some dedicated beam study time.

- We are at or near the present limit of the Proton Source output.
- This is a factor of five to ten away from what is needed.
- Current plans (collimators, orbit control, ...) might realistically increase things by a factor of two or three, tops.
- Getting further will be hard!!!
- It will not happen parasitically.