RESONANCES AND
COUPLING

Eric Prebys, UC Davis
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Perturbations (non-linear or otherwise)

« In our earlier lectures, we found the general equations of motion

) By(x,s) X : P+X This part gave us
X == (Bp) 1+; "’7 the Hill's equation
” Bx (y,S) X ’ i
y'= (50) (1+; B, =B, +Bx+AB (x,s)
- We initially considered only the linear B, = B'y+AB (y,s)
fields, but now we will bundle all
additional terms into AB Move this to the
- non-linear plus linear field errors other Sid‘t? of the
equation
- We see that if we keep the lowest a
order term in AB, we have ., |1 B 1
x"+| —++— |x=—7—<AB (x,5)
2 y
o (o)) o)

B 1
y (Bp)y (Bp) ABX(YrS)
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Floquet Transformation
Evaluating these perturbed equations can be very complicated, so we
will seek a transformation which will simplify things
Our general equation of motion is
x(s) = A B(s) cos(yp(s) + )
This looks quite a bit like a harmonic oscillator, so not surprisingly
there is a transformation which looks exactly like harmonic oscillations
X
Es)=—
ﬁ
_y_1 f g _ 1
v /3’ ds v
IS
Plugging back into the Equation do_dpdy_ 1
ds dyds v
x= \/75
2 dE dp <
\Fﬁ"& P ap as afg V\F a=-3#
\ dg .
v\/7 (é—‘ av§) e
” a = 1 g a§
X =W(§+O’V§)+V /)7(1//)7 g—ﬂ)
g —vz(a2§+ ﬂa')&-‘
= 1/2/),3/2
So our differential equation becomes
&= 2 2 '
¥+ K(s)x=2"Y V(f’ﬁ;z/” a'k +K(s)B"E
~ é—vz(az +/J’a’—ﬂ2K)§ __AB
T )
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When we derived chromaticity in terms of lattice functions
(“Off-momentum particles lecture), we showed that:
KB*-Ba'-a*=1
So our rather messy equation simplifies
E-va®+pa -BKE  AB
2 532 -7
v’p (Bo)
_ §+v2§ | _,2 3/2&
(Bo)
Harmonic \ Driving
Oscillator Term
IS

Understanding Floquet Coordinates
In the absence of nonlinear terms, our equation of motion &
is simply that of a harmonic oscillator

) v
(@) +vE(@)=0
and we write down the solution
§(¢)=acos(v¢+c5) TS
E(p)=-av sin(v¢+ (5) K 3
Thus, motion is a circle in the ( *) pIane

Using our standard formalism, we can express this as
) cos v¢ Bsm v¢

£06)=5, cos(v9)» 2sin(w9) ;»( £9) Where i
’g‘(¢]=—§0v51n(v¢)+‘§0 cos(vd)) £¢)
A common mistake is to view ¢ as the phase angle of the oscillation.

v the phase angle of the oscillation
¢ advances by 211 in one revolution, so it's related (but NOT equal to!) the angle

around the ring. .
unnormalized!
. 2 _ _ 2 _ 2 2 _
Note: x,, =Pe=Pp&. .. =Pa =a =¢

1
——sin vql) cos vqb
B

21

v
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Perturbations

In general, resonant growth will occur if the perturbation has a
component at the same frequency as the unperturbed oscillation; that

sit AB(E,¢) = ae”™ +(...) = resonance!

We will expand our magnetic errors at one point in ¢ as Note:
AB(x)=by +bx +b,x* +bx" b, = — b,=b,(s)

2 p32 2 =bn(¢)
X= \/ES _VBTAB_ v (ﬁmbo+ﬁ4/2b]§+ﬁ5/2b2§2+...)

(Bp)  (Bp)
S A 2e v < (n+3)/27 en
E+viE= (Bp);ﬁ b,E

But in general, b, is a function of ¢, as is B, so we bundle all the
dependence |nto harmonics of ¢ g - E

(

So the equation associated with the nth driving term becomes

é+v2§ = 2 E C Eneimw Remember!
mn &,B, and b, are all

functions of (only) ¢

1)

2z

in -img _
fe e"dp=2m6,,
0

Calculating Driving Terms

We can Fourier transform to calculate the C,, , coefficients based on the

measured fields 1
- /))n+3 /2b —tm¢d¢
’ Bp 27 f
But we generally know things as functlons of s, so we use d¢_—dzp _l(iilds ——ﬂd
to get v

C,, = B2 (s)b, (s)e™ ds
G

Where (for a change) we have explicitly shown the s dependent terms.

We’re going to assume small perturbations, so we can approximate 3 with the
solution to the homogeneous equation .. & )
E+viE=—* 2 c, Eem

Mm=—o

E(9)= acos(wp); (define starting point so 4 =0)

n n . .

1 y i il
&"=a"cos"(vp)=Re|a"— n—k ™| where| | |[=———
(vo)-Rela" - T

ken
Ak=2 2
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- Example

3

g L[ 3 _ 3 . 3 3 _3 1
cos 6—23(( )cos( 36)+( > )cos( 9)+( | )cos(9)+( 0 ]cos(36)) 4cos39+4c059

+ Plugging this in, we can write the nth driving term as

©

2f 4 " fk i(m+vic)p
-v (5) D=k |>C,e
k=-n

m=—o0
Ak=2 2

- We see that a resonance will occur whenever

m+vk = xv
v(IFk)==2m

—o<m<®©
where

combinations by writing m
v =

resonant 1 _ k

- Reminder

- n= power of multipole expansion (quad=1, sextupole=2, octupole=2, etc)
- m= Fourier component of anomalous magnetic component when

integrated around the ring.

-n=sk=n (Ak=2)

- Since m and k can have either sign, we can cover all possible
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Types of Resonances

n k Order Resonant tunes Fractional Tune at
Magnet Type 11-K| v=m/(1-k) Instability
Dipole 0 0 1 m 0,1

1 1 0 none (tune shift) -
Quadrupole

1 -1 2 m/2 0,1/2,1

2 2 1 m 0,1
Sextupole 2 0 1 m 0,1

2 -2 3 m/3 0,1/3,2/3,1

3 3 2 m/2 0,1/2,1

3 1 0 None -
Octupole

3 -1 2 m/2 0,1/2,1

3 -3 4 m/4 0,1/4,1/2,3/4,1
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Example: Sextupole (Third Order Resonance)

- The third order resonance will occur at tunes near m/3.
- The strength of the resonance will be given by

Sextupole term \) Corjvert back to
gﬁ/),a/z COS 31/))ds ordinary phase

angle 3vgp =3y
B b

B'=-2
2

Sﬁ /33/ : sm (3y)ds

- It will perturb the stable reglon of phase space into a

triangle ‘
! Relative size of A
Terms determine AN
A,,=0 Orientation in /
phase space /
m,2 = 0 _____

[T
Strength of Resonance

- The size of the stable region in phase space with shrink
with increased driving strength or by moving the tune
closer to m/3.

sv=v-"
3
m: I P ] Eﬁﬂm B cos (3y)ds L]
5
5 |- R o Eﬁﬁa/z B’ sm 31/J)ds [L]—I/Z
*%’ e Y' \ ﬂ — . 647[26\/
= f -
o max 2 2
3(4z,+B2,)
ol 5, 3¢(42 +B?
l | ‘ ' (SV: ( m,2 m,Z)
-10 -5 0 s 8”
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Simulation of Third Integer Extraction™

1

v =045 v ——=0.117 g-m-év = 2.932
t (R t

2 T T T

1 — —
Bit
- = -
FPy

_1 — —

- 1 | |

-2 -1 0 1 2

X o FPx

*M. Syphers
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Application of Resonance

- If we increase the driving term (or move the tune closer to m/3), then
the area of the triangle will shrink, and particles which were inside the
separatrix will now find themselves outside

- These will stream out along the asymptotes
at the corners.

- These particles can be intercepted
by an extraction channel

- =»Slow extraction (ms to many seconds)
- Very common technique

Unstable beam motion : / l
{ Extracted beam

4
k2
§

in N(order) turns Extraction Field

Lost beam
Septum

>
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Example: Mu2e Experiment 8 GeV Extraction

- Use sextupoles to drive 3™ integer resonance

20 Moving tune closer to m/3 will
reduce stable phase space,
causing beam to be removed at
1~ a steady rate

15

10

- L L L L
2220 -15 -10 =5 0 5 10 15 20

z (mm) 7
\ Electrostatic septum at 80 kV/1cm
deflects beam into a downstream

Lambertson magnet
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Coupling

0B 0B,  Planes coupled

Introduce skew-quadrupole term  y/ oc — ¥ % X
dx ay x and y motion not
0B, 0B, independent
=——#0 , 0B 0B,
d0x dy y o< y+—*x
dy 0x

General Transfer Matrix

l= _B'l
X o F 7 (Bp)
x X,
=M
y Yo 1 00 0
, ¢ 1 0 0
y / M|
Yo 7l 0 0 1 0
0 0 g 1
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Skew quad
n’
4 7’ l ~
B =Bx— Ay = X=qx
(Bp)

Bl

B, =-By— Ax'= y=qy
(Bp)

So the transfer matrix for a skew quad would be:

o © O =
S O = O
S = O
- o O O

For a normal quad rotated by ¢ it would be

1 0 0 0
—qcos2¢ 1 —gsin2¢ O
M, =
0 0 1 0
—gsin2¢ 0 gcos2¢ 1
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Coupled Tunes

If there’s coupling, then there will
always be a tune split

V.=V, =V
—0v=0

A’vmin = V+ -V
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K =q,B.B,

If there’s no coupling, then

Vi
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Example: Tune Coupling in LHC

Info [ FFT | PLL | DataSets | FB/Trim | Orbit Mag |~

19

Q2= 310611 Qy = .310530

LHC - B1 - fill #900 - avg. of 2 datasets - LHC.BQBBQ.UA47.FFT2_B1 - 2009-12-0...
surements §
) £ o
LHC - B1 - Fill#900.0 £ -
L.
2009-12-05 10:45:10 B
RAWS&FFT: 8192 turns@1.0Hz £ 120 fogmhestshugpoinie
PLL/BTF??
Q1= .280254 Qx= .280335 -1407

Q'x = 4.567151
Q'y = 5.113084

E

| o
A
s 2

frequency [frev]

Aco#/ o Misc

~ fill #900 - ava. of 2 datghets - LHC BOBBQ.UA47 AFT2_B1 - 2009-12-0.

|C-| = .003132 E= 450.0 GeV o o b ob o ob b b ol o

v

vertical amplitude (8]

Spawn TuneViewer Display

c nts:
[ava. of 2 datasets

L |
BB oR BB om0
Q2 G RO Ve
& 5 88 0o 8 8 8

10:48:26 - >_DATA/OP_DATW/FILL_DATA/FILL_DiR/tuneviewen) Tune Viewer LHCB1_LHC_2009-12-05_1045.

-160-|
auto-save
J A’ 027 028 029 03 031 032 033 034
frequency [frev]

‘
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Coupling and Resonances

Although we won't derive it in detail, it's clear that if motion is
coupled, we can analyze the system in terms of the normal
coordinates, and repeat the analysis in the last chapter. In this
case, the normal tunes will be linear combinations of the tunes in
the two planes, and so the general condition for resonance

b : i
ecomes kv, + kyVy =m (kx,ky ,m all integers)

5

This appears as a set of crossing
lines in the nx,ny “tune space”.
The width of individual lines
depends on the details of the
machine, and one tries to pick
a “working point” to avoid 4.5p=
the strongest resonances.
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