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RESONANCES AND 
COUPLING 
Eric Prebys, UC Davis 

Perturbations (non-linear or otherwise) 
•  In our earlier lectures, we found the general equations of motion 

•  We initially considered only the linear  
fields, but now we will bundle all  
additional terms into ΔB 
•  non-linear plus linear field errors 

•  We see that if we keep the lowest 
order term in ΔB, we have 
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Floquet Transformation 
•  Evaluating these perturbed equations can be very complicated, so we 

will seek a transformation which will simplify things 
•  Our general equation of motion is 

•  This looks quite a bit like a harmonic oscillator, so not surprisingly 
there is a transformation which looks exactly like harmonic oscillations 
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Plugging back into the Equation 
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• When we derived chromaticity in terms of lattice functions 
(“Off-momentum particles lecture), we showed that: 

 
 
• So our rather messy equation simplifies 
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Harmonic 
Oscillator 

Driving 
Term 

Understanding Floquet Coordinates 
•  In the absence of nonlinear terms, our equation of motion 

is simply that of a harmonic oscillator 

and we write down the solution 
 

 
•  Thus, motion is a circle in the        plane 
•  Using our standard formalism, we can express this as 

 

 

•  A common mistake is to view φ as the phase angle of the oscillation. 
•  νφ the phase angle of the oscillation 
•  φ advances by 2π in one revolution, so it’s related (but NOT equal to!) the angle 

around the ring. 
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Perturbations 
•  In general, resonant growth will occur if the perturbation has a 

component at the same frequency as the unperturbed oscillation; that 
is if 

•  We will expand our magnetic errors at one point in φ as 

•  But in general, bn is a function of φ, as is β, so we bundle all the 
dependence into harmonics of φ

•  So the equation associated with the nth driving term becomes 

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Resonances and Coupling 7 

 

ΔB(x)≡ b0 +b1x+b2x
2 +b3x

3...;bn ≡
1
n!
∂n B
∂xn x=y=0

−
ν 2β 3/2ΔB

Bρ( )
= −

ν 2

Bρ( )
β 3/2b0 +β

4/2b1ξ +β
5/2b2ξ

2 + ...( )

!!ξ +ν 2ξ = −
ν 2

Bρ( )
β n+3( )/2bnξ

n

n=0

∞

∑

( )
( ) ∑

∞

−∞=

+ =
m

im
nmn

n eCb
B

φβ
ρ ,

2/31

		 
!!ξ +ν 2ξ =−ν 2 Cm,nξ

neimϕ
m=−∞

∞

∑ Remember! 
ξ,β, and bn are all 
functions of (only) φ

resonance!(...)),( ⇒+=Δ νφφξ iaeB

bn = bn (s)
= bn (φ)

Note: 

x = βξ

Calculating Driving Terms 
•  We can Fourier transform to calculate the Cm,n coefficients based on the 

measured fields 

•  But we generally know things as functions of s, so we use 
to get  

Where (for a change) we have explicitly shown the s dependent terms. 
•  We’re going to assume small perturbations, so we can approximate β with the 

solution to the homogeneous equation  
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•  Example 

•  Plugging this in, we can write the nth driving term as 
 

•  We see that a resonance will occur whenever 

•  Since m and k can have either sign, we can cover all possible 
combinations by writing 

•  Reminder 
•  n= power of multipole expansion (quad=1, sextupole=2, octupole=2, etc) 
•  m= Fourier component of anomalous magnetic component when 

integrated around the ring. 
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Types of Resonances 
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Magnet Type 
n k Order 

|1-k| 
Resonant tunes 
ν=m/(1-k) 

Fractional Tune at 
Instability 

Dipole 0 0 1 m 0,1 

Quadrupole 
1 1 0 none (tune shift) - 

1 -1 2 m/2 0,1/2,1 

Sextupole 

2 2 1 m 0,1 

2 0 1 m 0,1 

2 -2 3 m/3 0,1/3,2/3,1 

Octupole 

3 3 2 m/2 0,1/2,1 

3 1 0 None - 

3 -1 2 m/2 0,1/2,1 

3 -3 4 m/4 0,1/4,1/2,3/4,1 
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Example: Sextupole (Third Order Resonance) 
•  The third order resonance will occur at tunes near m/3. 
•  The strength of the resonance will be given by 

•  It will perturb the stable region of phase space into a 
triangle 
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Strength of Resonance 
•  The size of the stable region in phase space with shrink 

with increased driving strength or by moving the tune 
closer to m/3. 
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Nonlinearity in accelerators has been employed to provide 
• Beam manipulations such as slow extraction, beam dilution
• Landau damping for collective beam instabilities
• Overcoming spin depolarization resonances  

Nonlinear detuning parameters: Accelerator magnets may have many 
nonlinear magnetic multipoles. Some of them can introduce nonlinear 
perturbation to betatron motion, e.g.

With Floquet transformation, the Hamiltonian becomes

The coefficients α’s are called nonlinear detuning parameters 

Betatron detuning:

+…..

chromaticity

octupole

sextupole

The bifurcation of third-order resonance 
islands occurs at 16αδ ≤ 9G3,0,ℓ

2. The 
Figure shows αJUFP

1/2/|G3,0,ℓ| vs αδ/G3,0,ℓ
2

for the bifurcation of third-order resonance. 

Effect of nonlinear detuning
Nonlinear magnetic multipoles also generate nonlinear betatron detuning, i.e. the 
betatron tunes depend on the betatron actions. Including the effect of nonlinear 
betatron detuning, the Hamiltonian near a third-order resonance is

With nonlinear detuning, stable fixed points appear. The fixed points of the 
Hamiltonian for á > 0 and G > 0 are
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Simulation of Third Integer Extraction* 
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*M. Syphers 

Application of Resonance 
•  If we increase the driving term (or move the tune closer to m/3), then 

the area of the triangle will shrink, and particles which were inside the 
separatrix will now find themselves outside 

•  These will stream out along the asymptotes 
at the corners. 

•  These particles can be intercepted 
by an extraction channel 
•  èSlow extraction (ms to many seconds) 
•  Very common technique 
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Example: Mu2e Experiment 8 GeV Extraction 
• Use sextupoles to drive 3rd integer resonance 
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Moving tune closer to m/3 will 
reduce stable phase space, 
causing beam to be removed at 
a steady rate 

Electrostatic septum at 80 kV/1cm 
deflects beam into a downstream 
Lambertson magnet 

Coupling 
USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Resonances and Coupling 16 

∂Bx

∂x
= −

∂By

∂y
≠ 0

Introduce skew-quadrupole term ′x ∝−
∂By

∂x
x −

∂By

∂y
y

′y ∝ ∂Bx

∂y
y + ∂Bx

∂x
x

Planes coupled 
x and y motion not  
independent 

General Transfer Matrix 

x
′x
y
′y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= M

x0
′x0
y0
′y0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Normal Quad 

1
f
≡ q = ′B l

Bρ( )

MQ =

1 0 0 0
−q 1 0 0
0 0 1 0
0 0 q 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟



6/13/18 

9 

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Resonances and Coupling 17 

Skew quad 
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Coupled Tunes 
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Example: Tune Coupling in LHC 
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Coupling and Resonances 
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Although we won’t derive it in detail, it’s clear that if motion is 
coupled, we can analyze the system in terms of the normal 
coordinates, and repeat the analysis in the last chapter.  In this 
case, the normal tunes will be linear combinations of the tunes in 
the two planes, and so the general condition for resonance 
becomes. 
 
 
This appears as a set of crossing 
lines in the nx,ny “tune space”. 
The width of individual lines 
depends on the details of the 
machine, and one tries to pick 
a “working point” to avoid 
the strongest resonances. 

kxν x ± kyν y = m   (kx ,ky ,m all integers)


