

RESONANCES AND COUPLING

Eric Prebys, UC Davis

ŢŢŢŢ

SPAS Fundamentals, June 4-15, 2018

E. Prebys, Accelerator Fundamentals: Resonances and Coupling

Perturbations (non-linear or otherwise)

· In our earlier lectures, we found the general equations of motion

$$x'' = -\frac{B_y(x,s)}{(B\rho)} \left(1 + \frac{x}{\rho}\right)^2 + \frac{\rho + x}{\rho^2}$$

$$B_y(x,s) \left(1 + \frac{x}{\rho}\right)^2 + \frac{\rho + x}{\rho^2}$$

$$y'' = \frac{B_x(y,s)}{(B\rho)} \left(1 + \frac{x}{\rho}\right)^2$$

- We initially considered only the linear fields, but now we will bundle all additional terms into ΔB
 - · non-linear plus linear field errors
- We see that if we keep the lowest order term in ΔB, we have

This part gave us the Hill's equation

$$B_y = B_0 + B'x + \Delta B_y(x, s)$$

$$B_x = B'y + \Delta B_x(y,s)$$

Move this to the other side of the equation

$$x'' + \left(\frac{1}{\rho^2} + \frac{B'}{(B\rho)}\right)x = -\frac{1}{(B\rho)}\Delta B_y(x,s)$$
$$y'' - \frac{B'}{(B\rho)}y = \frac{1}{(B\rho)}\Delta B_x(y,s)$$

E. Prebys. Accelerator Fundamentals: Resonances and Coupling

Floquet Transformation

- Evaluating these perturbed equations can be very complicated, so we will seek a transformation which will simplify things
- · Our general equation of motion is

$$x(s) = A\sqrt{\beta(s)}\cos(\psi(s) + \delta)$$

 This looks quite a bit like a harmonic oscillator, so not surprisingly there is a transformation which looks exactly like harmonic oscillations

$$\mathcal{E}(s) = \frac{x}{\sqrt{\beta}}$$

$$\phi = \frac{\psi}{v} = \frac{1}{v} \int \frac{1}{\beta} ds \Rightarrow \frac{d\phi}{ds} = \frac{1}{v\beta}$$

USPAS Fundamentals, June 4-15, 2018

E. Prebys, Accelerator Fundamentals. Resonances and Coupling

$$x = \sqrt{\beta} \, \xi$$

$$x' = \frac{1}{2} \frac{1}{\sqrt{\beta}} \beta' \xi + \beta^{1/2} \frac{d\xi}{d\phi} \frac{d\phi}{ds} = -\alpha \frac{1}{\sqrt{\beta}} \xi + \frac{1}{v\sqrt{\beta}} \dot{\xi}$$

$$= \frac{1}{v\sqrt{\beta}} (\dot{\xi} - \alpha v \xi)$$

$$x'' = \frac{\alpha}{v\beta^{3/2}} (\dot{\xi} + \alpha v \xi) + \frac{1}{v\sqrt{\beta}} (\frac{\ddot{\xi}}{v\beta} - \alpha' v \xi - \frac{\alpha \dot{\xi}}{\beta}) = \frac{\ddot{\xi} - v^2 (\alpha^2 \xi + \beta \alpha') \xi}{v^2 \beta^{3/2}}$$
So our differential equation becomes
$$x'' + K(s)x = \frac{\ddot{\xi} - v^2 (\alpha^2 + \beta \alpha') \xi}{v^2 \beta^{3/2}} + K(s)\beta^{1/2} \xi$$

 $=\frac{\ddot{\mathcal{E}}-v^2(\alpha^2+\beta\alpha'-\beta^2K)\mathcal{E}}{v^2\beta^{3/2}}=-\frac{\Delta B}{(B\rho)}$

USPAS Fundamentals, June 4-15, 201

E. Prebys, Accelerator Fundamentals: Resonances and Coupling

 When we derived chromaticity in terms of lattice functions ("Off-momentum particles lecture), we showed that:

$$K\beta^2 - \beta\alpha' - \alpha^2 = 1$$

So our rather messy equation simplifies

$$\frac{\ddot{\mathcal{E}} - v^2 \left(\alpha^2 + \beta \alpha' - \beta^2 K\right) \mathcal{E}}{v^2 \beta^{3/2}} = -\frac{\Delta B}{\left(B\rho\right)}$$

$$\ddot{\mathcal{E}} + v^2 \mathcal{E} = -v^2 \beta^{3/2} \frac{\Delta B}{\left(B\rho\right)}$$
Harmonic Oscillator Driving Term

UN LISBAS From dominantals, June 4, 15, 2019

 $\sqrt{\nu\phi+\delta}$

Understanding Floquet Coordinates

• In the absence of nonlinear terms, our equation of motion $\dot{\xi}$ is simply that of a harmonic oscillator

$$\ddot{\mathcal{E}}(\phi) + v^2 \mathcal{E}(\phi) = 0$$

and we write down the solution

$$\mathcal{E}(\phi) = a\cos(v\phi + \delta)$$

$$\dot{\mathcal{E}}(\phi) = -av\sin(v\phi + \delta)$$

$$\begin{split} & \xi(\phi) = \xi_0 \cos\left(v\phi\right) + \frac{\dot{\xi}_0}{v} \sin\left(v\phi\right) \\ & \dot{\xi}(\phi) = -\xi_0 v \sin\left(v\phi\right) + \dot{\xi}_0 \cos\left(v\phi\right) \end{split} \Rightarrow \left(\begin{array}{c} \xi(\phi) \\ \dot{\xi}(\phi) \end{array} \right) = \left(\begin{array}{c} \cos\left(v\phi\right) & \tilde{\beta} \sin\left(v\phi\right) \\ -\frac{1}{\tilde{\beta}} \sin\left(v\phi\right) & \cos\left(v\phi\right) \end{array} \right) \left(\begin{array}{c} \xi_0 \\ \dot{\xi}_0 \end{array} \right); \text{ where } \tilde{\beta} = \frac{1}{v} \end{split}$$

- A common mistake is to view ϕ as the phase angle of the oscillation.
 - vφ the phase angle of the oscillation
 - ϕ advances by 2π in one revolution, so it's *related* (but NOT equal to!) the angle around the ring.

Note:
$$x_{\text{max}}^2 = \beta \varepsilon = \beta \xi_{\text{max}}^2 = \beta a^2 \Rightarrow a^2 = \epsilon$$

Perturbations

 In general, resonant growth will occur if the perturbation has a component at the same frequency as the unperturbed oscillation; that is if

 $\Delta B(\xi, \phi) = ae^{i\nu\phi} + (...) \Rightarrow \text{resonance}!$

We will expand our magnetic errors at one point in φ as

$$\Delta B(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 ...; b_n = \frac{1}{n!} \frac{\partial^n B}{\partial x^n} \Big|_{x=y=0}$$

$$\beta^{3/2} \Delta B \qquad v^2 \qquad (\rho^{3/2} b_1 + \rho^{4/2} b_2 + \rho^{5/2} b_3 + \rho$$

$$b_n = b_n(s)$$
$$= b_n(\phi)$$

$$x = \sqrt{\beta} \xi$$

$$-\frac{v^2 \beta^{3/2} \Delta B}{(B \rho)} = -\frac{v^2}{(B \rho)} (\beta^{3/2} b_0 + \beta^{4/2} b_1 \xi + \beta^{5/2} b_2 \xi^2 + ...)$$

$$\ddot{\xi} + v^2 \xi = -\frac{v^2}{(B\rho)} \sum_{n=0}^{\infty} \beta^{(n+3)/2} b_n \xi^n$$

- But in general, b_n is a function of ϕ , as is β , so we bundle all the dependence into harmonics of ϕ $\frac{1}{(B\rho)} \beta^{(n+3)/2} b_n = \sum_{m=-\infty}^{\infty} C_{m,n} e^{im\phi}$
- So the equation associated with the nth driving term becomes

$$\ddot{\xi} + v^2 \xi = -v^2 \sum_{m=-\infty}^{\infty} C_{m,n} \xi^n e^{im\varphi}$$

 ξ , β , and b_n are all functions of (only) ϕ

Calculating Driving Terms

- $\, \cdot \,$ We can Fourier transform to calculate the $C_{m,n}$ coefficients based on the measured fields $C_{m,n} = \frac{1}{(B\rho)} \frac{1}{2\pi} \int_{0}^{2\pi} \beta^{(n+3)/2} b_n e^{-im\phi} d\phi$
- But we generally know things as functions of s, so we use $d\phi = \frac{1}{v}d\psi = \frac{1}{v}d\psi = \frac{1}{v}d\phi ds = \frac{1}{vB}ds$ to get

$$C_{m,n} = \frac{1}{(B\rho)} \frac{1}{2\pi \nu} \oint \beta^{(n+1)/2}(s) b_n(s) e^{-im\phi} ds$$

Where (for a change) we have explicitly shown the s dependent terms.

 We're going to assume small perturbations, so we can approximate β with the solution to the homogeneous equation

 $\ddot{\xi} + v^2 \xi = -v^2 \sum_{m=-\infty}^{\infty} C_{m,n} \xi^n e^{im\varphi}$

 $\xi(\phi) \approx a\cos(v\phi)$; (define starting point so $\delta = 0$)

$$\mathcal{E}^{n} = a^{n} \cos^{n} \left(v \phi \right) = \operatorname{Re} \left[a^{n} \frac{1}{2^{n}} \sum_{k=-n \atop k=-n}^{n} \left(\frac{n}{\frac{n-k}{2}} \right) e^{ivk\phi} \right]; \text{ where } \left(\begin{array}{c} i \\ j \end{array} \right) = \frac{i!}{j!(i-j)!}$$

USPAS Fundamental

E. Prebys, Accelerator Fundamentals: Resonances and Coupling

0,1/2,1

0,1/4,1/2,3/4,1

Example

$$\cos^3\theta = \frac{1}{2^3} \left(\begin{pmatrix} 3 \\ 3 \end{pmatrix} \cos(-3\theta) + \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cos(-\theta) + \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cos(\theta) + \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cos(3\theta) \right) = \frac{3}{4} \cos 3\theta + \frac{1}{4} \cos \theta$$

· Plugging this in, we can write the nth driving term as

$$-v^{2} \left(\frac{a}{2}\right)^{n} \sum_{\substack{k=-n\\ \Delta k=2}}^{n} \left(\frac{n}{n-k}\right) \sum_{m=-\infty}^{\infty} C_{m,n} e^{i(m+\nu k)\phi} \qquad \qquad \left(\begin{array}{c} i\\ j \end{array}\right) \equiv \frac{i!}{j!(i-j)!}$$

· We see that a resonance will occur whenever

$$m + vk = \pm v$$
 where $-\infty < m < \infty$
 $v(1 \mp k) = \pm m$ $-n \le k \le n \quad (\Delta k = 2)$

• Since *m* and *k* can have either sign, we can cover all possible combinations by writing

$$v_{\text{resonant}} = \frac{m}{1 - k}$$

Reminder

Octupole

3

3

-1

-3

2

4

m/2

m/4

- n= power of multipole expansion (quad=1, sextupole=2, octupole=2, etc)
- m= Fourier component of anomalous magnetic component when integrated around the ring.

USPAS Fundamentals, June 4-15, 2018			E. Prebys, Accelerator Fundamentals: Resonances and Coupling 10		
Types of R	esor	nanc	ces		
Magnet Type	n	k	Order 1-k	Resonant tunes v=m/(1-k)	Fractional Tune at Instability
Dipole	0	0	1	т	0,1
Quadrupole	1	1	0	none (tune shift)	-
	1	-1	2	m/2	0,1/2,1
Sextupole	2	2	1	т	0,1
	2	0	1	т	0,1
	2	-2	3	m/3	0,1/3,2/3,1
	3	3	2	m/2	0,1/2,1
	3	1	0	None	-

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Resonances and Coupling

Skew quad

$$B_x = \tilde{B}'x \to \Delta y' = \frac{\tilde{B}'l}{(B\rho)}x \equiv \tilde{q}x$$

$$B_{x} = \tilde{B}'x \to \Delta y' = \frac{B'l}{(B\rho)}x \equiv \tilde{q}x$$

$$B_{y} = -\tilde{B}'y \to \Delta x' = \frac{\tilde{B}'l}{(B\rho)}y \equiv \tilde{q}y$$

So the transfer matrix for a skew quad would be:

$$\mathbf{M}_{\tilde{\mathbf{Q}}} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & \tilde{q} & 0 \\ 0 & 0 & 1 & 0 \\ \tilde{q} & 0 & 0 & 1 \end{array} \right)$$

For a normal quad rotated by ϕ it would be

$$\mathbf{M}_{\mathbf{Q}} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -q\cos 2\phi & 1 & -q\sin 2\phi & 0 \\ 0 & 0 & 1 & 0 \\ -q\sin 2\phi & 0 & q\cos 2\phi & 1 \end{array} \right)$$

