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Off-Momentum Particles
Our previous discussion implicitly assumed that all particles were at

the same momentum
Each quad has a constant focal length

There is a single nominal trajectory
In practice, this is never true. Particles will have a distribution about

the nominal momentum
We will characterize the behavior of off-momentum particles in the

following ways
“Dispersion” (D): the dependence of povsition on deviations from the nominal

momentum A
Ax(s) = D, ()

Py

D has units of length
“Chromaticity” (n) : the change in the tune caused by the different focal lengths for

off-momentum particles Ap . Av Ap
Av =& —— |sometimes —= =& —
pO Ux pO
Path length changes (momentum compaction)
AL A
AL _ A

L p
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Review: Equations of Motion

- Recall that in a curvilinear
coordinate system, the
equations of motion become

B 2
X"=- (1+ ) p+2x
(Bp) p) p
2
B X
y”=_x 1+=—
(Bp)( p)
- We'll now consider consider the effect of of off momentum particle by

comparing the “true” rigidity to the nominal rigidity

1 1 p, 1 Py 1 Ap
- (Bp)L = = - o
(BP),,. = (Bp P, (BP)W (Bp) p (Bp)(p,+Ap) (BP)( Po)

Note: s measured along nominal
trajectory, v, measured along actual
trajectory
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Off-Momentum Particles

If we substitute this into the equations of motion, and keep only linear
terms, we end up with one new term in each equation

2
0 A’”)( ) B
V' =—1- I+—| =(...)-—=
o)l ") T ()
The parts in parentheses just give us our nominal equations of
motion. We now invoke B B 1
B =B'y=0 ==
: y (o0) (o0] o
B =B +B'x=B_:
s : LA
And our new equations become (Bp

x"+[;2+(31p)3')x=16; y"—ﬁB'y=O
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This is a second order differential inhomogeneous differential
equation, so the solution is

x(5) = x,C(s) + x,S(s) + M (s)
x'(s) =x,C'(s) + x,S'(s) + & (s)

Where d(s) is the solution particular solution of the differential equation

d"+ Kd = 1
o,
We solve this piecewise, 1
for K constant and find K>0: d(s) =—(1—cos\/fs)

oK

d'(s) = p\I/E sin VK s
K<0: d(s)= —pLK(l—coshx/Es)
1

VK

d'(s) = sinh VK s
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General Solution

- The general solution is now
x(s) = x,C(s) + x,S(s) +|d (5)

x'(s) =x,C'(s)+ x,8'(s)|+ ' (s)

/I

Solution to the on-
momentum case

- We can express this in matrix form as
Usual transfer matrix

\ Off-momentum
correction

/ x(s) | My My, | d(s) \( Xo \
x'(s) |=||m, my| d'(s) X',
0 0 O 1 0

\ )\ A\ /
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New Equilibrium Orbit

We want to solve for an orbit of an off-momentum
particle that follows the periodicity of the machine.

This will serve as the new equilibrium orbit for off-
momentum particles. “Dispersion” [L]

x(s,0)=D _(s)0

This must satisfy

(o0 | (M, M, d | oD (D /
D', |=| M, M, d | oD | mmhp | D', |=(-]
5 0 0 1| o 1

\ \ )
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Simplifying Assumptions

- For the most part, we will consider systems for which
both of the following are true

- “separated function”: Separate dipoles and quadrupoles

1 \ :
= — and B' are never both non-zero at the same point

0

- “Isomagnetic™: All bend dipoles have the same field

iz = iz inside of bend dipoles
P P,

=0 everywhere else
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Example: FODO Cell

- We look at our symmetric FODO cell, but assume that the drifts are bend
magnets that take up the entire space (a pretty good assumption)

- Each bends the beam by an angle 6

0 6
of 2f
For a thin lens d~d’~0. For a pure bend magnet s<<p,
2
K=i2: d(L)=L(1—COS\/EL) =P, 1—cos£ zLLzelL—=19L
o Pk Po) 20, 2P, 2
d'(L)= sinVKL  =sin— Ly

po\/E Py P
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Transfer Matrix

We put this all together to get a

transfer matrix of the form

Using our solutions
from the previous

page, we get 1 00
mM=| -L 10
2f
0 01
For a ring:
g 21 W 2f°
2]Vcell Ncell ) —L Lz
2f* 4f°
0

x(s) M11 M12
x'(s) [= M21 M22
0 0 0
LO
1 L —
> 1 0 0
0O 1 @6 — 1 0
00 1 || f
0 0 1
2L(1+L) 2L0(1+L)
2 f
_r (L L
2f* 4f 8f°
0 1

Usual transfer matrix

e

d(s)
d'(s)
1

—_
e~
HCDN|€

o O
o

1 0 0
-—— 1 0
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Solving for Dispersion
- We must solve

( )
1- Lz 2L(1+£) 2L9(1+L)
D 2f f D
D |= 2 2 2 D’
1 _L2+L3 1- Lz 20 I_L_Lz 1
2 4f 2f 4f 8f
\ 0 0 1

- In your homework, you show that

HL(lilsinﬂ)
2 2

sin? %

D —

F.D
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Evolution of Dispersion Functions

- Since the dispersion functions represent
displacements, they will evolve like the position

(D) | ( m, m, dis) | D.O) )
D' (s) |=| m,, m,, d'(s) D' (0)
\ : /A 0 0 : /\ : /
- Putting it all together =
. 10XDispersion(m) /
1I5F N — — Beta(m) 4
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Momentum Compaction Factor
- In general, particles with a high momentum will travel a

longer path length. We have C(p )=§ﬁds
0
D
[+A =1|1+4=0 DA
______ ( p ) C(p,+Ap)= Eﬁ(“p pp)d
0
l . x=D(5 D
—ds
“momentum AL = P 5=<B>5
Y compaction” factor C fﬁds p
=0 0

So yes, we now have an ambiguous definition of o, too!
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Slip Factor

The “slip factor” is defined as the fractional change in
the orbital period divided by the fractional change in

momentum
T ¢ 1 0 locity dominat
=— y<——: n<0 velocity dominates
v Ja
AT AC Av AC AP 1 .
-— y>——: 1n>0 momentum dominates
T C v C B Ja
Ap 1 Ap Yy = 1 : =0 "transition"
=0 Ja
p vy D
_ 1|Ap
= (x—F ? gransition ) 1 . 1 1
amma or > =_ = — ——
“ocamma-T1" T
.Y gamma: T Jo o \n Y



I\!Hg USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Off-Momentum Particles

Special Cases for Slip Factor

 Linacs: oc=0en=—l2 (always negative)
Y
- Simple Cyclotrons:
p 1 "
C=2np=2n——=a=1—-n=|1-—| (0to positive)
eb yz

- Synchrotrons: more complicated

- Negative below y;
- Positive above vy
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Transition vy for Synchrotrons (approx.)
- For a simple FODO CELL

(liSIIl g)
L =2L ;and D = 0L

max,mm . max, min

sin u

- If we assume they vary ~linearly between maxima, then
for small p

2L _40L_, ()
Br== i D)= =4 =

- Also

1 ds 1 2R p
Y2V b " () (p)
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(cont'd)

- We just showed

- So

- This approximation generally works better than it should
- FNAL Booster: v=6.8, y;:=5.5
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Digression: Quadrupole Perturbation

We can express the matrix for a complete revolution at a point as

M(s) = (

cos2ztv + a(s)sin 2v S(s)sin 2xv )

— y(s)sin 2zv cos2mv — a(s)sin 27v

If we add focusing quad at this point, we have
cos2zv, + a(s)sin 2zv, B(s)sin 27v, )( 1 O]

1
—y(s)sin27v, cos2v —a(s)sin 2xv, 1

!
Als)

cos2zv, + a(s)sin 2zav, - ——=sm 2av, B(s)sm 2y,

M(s) = (

—y(s)sin2zv, - L (cos 2nv, —a(s)sin 2xv, ) cos2xv, —a(s)sin2mwv,

We calculate the trace to find the new tune

cos2mv = %Tr(M’) =Cos2v, — %/}’(s)sin 27V,

: 1 :
For small changes cos2ﬂ(v0 + Av)z cos2nv, - 2msin 2xv,Av = cos2xv, _ﬁ/j(s) sin2wv,
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Total Tune Shift

- The focal length associated with a local anomalous
gradient is

- So the total tune shift is

B'(s) ;o

f/)’(S) ,0)
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Chromaticity

In general, momentum changes will lead to a tune shift by changing
the effective focal lengths of the magnets

We already showed ,
1 Bl Bl p, 1 (1_%)

f (o) (Bo) p £ p,
__1plAp_cAp
—Avs 4712@12 P, P,

Where
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Chromaticity (Cont'd)

Recalling that in our general equation of motion
x" +( —+ B(s)

p* (Bp)

We see that the effective focal length for a region is

1 LB 1 41 B r

And we can write our general expression for the
chromaticity as

&———2/3 =>§———§ﬁ/3(S)K(S)dS

)x =0=x"+K(s)x
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Chromaticity in Terms of Lattice Functions

A long time ago, we derived the following constraint when solving our
Hill's equation

n

w'(s)+K(s)w(s)- 3k =O=>(\/E) +K+/B - 1 =0

w(s) B
B(s)=w(s) 11, o«
1 )53
a(s)=—>p(s) 2Jp" B
~a*+ By =1 (\/E)’;_\(/x; 1 « p- \/; o’ E/gtiply by
2[3)3/2 [3)3/2
= KB°-Ba’' -a*
(We're going to use that in a few 1+a? | ,
+o =y+0

lectures), but for now, divide by 3 to get Kp= ;

So our general expression for 1 ,
chromaticity becomes &= _Ef(y (5) +a'(s) ds
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Chromaticity and Sextupoles

we can write the field of a sextupole magnet as

1 "
B(x) = EB x” (often expressed bzxz)
If we put a sextupole in a dispersive region B
then off momentum particles will see a g
radient
° B'(x=Dd)=~ B'D2P P=potAp
which is effectively like a position Po b
dependent quadrupole, with a focal X
length given by ” Nominal momentum A
LB p2 (x)=D, L
Jer (Bp) Py P
So we write down the tune-shift as
av=_tpgl o LB AP 2
Note, this is only valid when the motion Am” f, Am(Bp) p, P,
due to momentum is large compared 1 BB
to the particle spread. = 55 = LD

47 (Bp)



