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Off-Momentum Particles 
•  Our previous discussion implicitly assumed that all particles were at 

the same momentum 
•  Each quad has a constant focal length 

•  There is a single nominal trajectory  
•  In practice, this is never true. Particles will have a distribution about 

the nominal momentum 
•  We will characterize the behavior of off-momentum particles in the 

following ways 
•  “Dispersion” (D): the dependence of position on deviations from the nominal 

momentum 

D has units of length 
•  “Chromaticity” (η) : the change in the tune caused by the different focal lengths for 

off-momentum particles 

•  Path length changes (momentum compaction) 
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Review: Equations of Motion 
•  Recall that in a curvilinear  

coordinate system, the  
equations of motion become 

•  We’ll now consider consider the effect of of off momentum particle by 
comparing the “true” rigidity to the nominal rigidity 
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Off-Momentum Particles 
•  If we substitute this into the equations of motion, and keep only linear 

terms, we end up with one new term in each equation 

 

•  The parts in parentheses just give us our nominal equations of 
motion. We now invoke 

 
•  And our new equations become 
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•  This is a second order differential inhomogeneous differential 
equation, so the solution is 

 
 
Where d(s) is the solution particular solution of the differential equation 
 
 
•  We solve this piecewise,  

for K constant and find 
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General Solution 
•  The general solution is now 

 
• We can express this in matrix form as 

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Off-Momentum Particles 6 

)()()()(
)()()()(

00

00

sdsSxsCxsx
sdsSxsCxsx
ʹ+ʹʹ+ʹ=ʹ

+ʹ+=

δ

δ

Solution to the on-
momentum case 

Off-momentum 
correction 

x(s)
x '(s)
δ

"

#

$
$
$

%

&

'
'
'
=

m11 m12 d(s)
m21 m22 d '(s)
0 0 1

"

#

$
$
$$

%

&

'
'
''

x0
x '0
δ

"

#

$
$
$$

%

&

'
'
''

Usual transfer matrix 



New Equilibrium Orbit 
• We want to solve for an orbit of an off-momentum 

particle that follows the periodicity of the machine. 
•  This will serve as the new equilibrium orbit for off-

momentum particles.  

•  This must satisfy 
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Simplifying Assumptions 
•  For the most part, we will consider systems for which 

both of the following are true 
•  “separated function”: Separate dipoles and quadrupoles 

•  “Isomagnetic”: All bend dipoles have the same field 
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Example: FODO Cell 
•  We look at our symmetric FODO cell, but assume that the drifts are bend 

magnets that take up the entire space (a pretty good assumption) 
•  Each bends the beam by an angle θ

 
 

For a thin lens d~d’~0.  For a pure bend magnet 
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Transfer Matrix 
•  We put this all together to get a 

transfer matrix of the form 

•  Using our solutions 
from the previous  
page, we get 

•  For a ring: 
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Solving for Dispersion 
• We must solve 

•  In your homework, you show that 
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Evolution of Dispersion Functions 
• Since the dispersion functions represent 

displacements, they will evolve like the position  

• Putting it all together 
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Momentum Compaction Factor 
•  In general, particles with a high momentum will travel a 

longer path length. We have 
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Slip Factor 
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Special Cases for Slip Factor 

•  Linacs: 

• Simple Cyclotrons: 

• Synchrotrons: more complicated 
•  Negative below γT 

•  Positive above γT 
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Transition γ for Synchrotrons (approx.) 
•  For a simple FODO CELL 

•  If we assume they vary ~linearly between maxima, then 
for small µ 

• Also 
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(cont’d) 
• We just showed 

• So 

 

•  This approximation generally works better than it should  
•  FNAL Booster:  ν=6.8, γT=5.5 
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Digression: Quadrupole Perturbation 
•  We can express the matrix for a complete revolution at a point as 

 
•  If we add focusing quad at this point, we have 

•  We calculate the trace to find the new tune 

•  For small changes 
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Total Tune Shift 
•  The focal length associated with a local anomalous 

gradient is 

• So the total tune shift is 
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Chromaticity 
•  In general, momentum changes will lead to a tune shift by changing 

the effective focal lengths of the magnets 
•  We already showed 

•  Where 
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Chromaticity (Cont’d) 
• Recalling that in our general equation of motion 

• We see that the effective focal length for a region is 

• And we can write our general expression for the 
chromaticity as 
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Chromaticity in Terms of Lattice Functions 
•  A long time ago, we derived the following constraint  when solving our 

Hill’s equation 

 

•  (We’re going to use that in a few  
lectures), but for now, divide by β to get 

 

•  So our general expression for  
chromaticity becomes 

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Off-Momentum Particles 22 

		

ʹ́w (s)+K(s)w(s)− k
w3(s)

=0⇒ β( )
ʺ
+K β −

1
β 3/2 =0

β( )
ʹ
=
1
2
1
β

ʹβ =−
α

β

β( )
ʺ
=−

ʹα

β
+
1
2
α

β 3/2 ʹβ =−
ʹα

β
−
α2

β 3/2

⇒Kβ 2−β ʹα −α2 =1

		
			Kβ = 1+α

2

β
+ ʹα =γ + ʹα

Multiply by 
β3/2  

( )∫ ʹ+−= dsss )()(
4
1

αγ
π

ξ

		

			β(s)=w2(s)

α(s)=−12 ʹβ (s)

−α2+βγ =1



Chromaticity and Sextupoles 
•  we can write the field of a sextupole magnet as 
 

•  If we put a sextupole in a dispersive region 
then off momentum particles will see a  
gradient 
 
which is effectively like a position 
dependent quadrupole, with a focal 
length given by 

•  So we write down the tune-shift as  
 

•  Note, this is only valid when the motion  
due to momentum is large compared 
 to the particle spread. 
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