

OFF-MOMENTUM PARTICLES

Eric Prebys, UC Davis

Off-Momentum Particles

- Our previous discussion implicitly assumed that all particles were at the same momentum
 - · Each quad has a constant focal length
 - There is a single nominal trajectory
- In practice, this is never true. Particles will have a distribution about the nominal momentum
- We will characterize the behavior of off-momentum particles in the following ways
 - "Dispersion" (*D*): the dependence of position on deviations from the nominal momentum

$$\Delta x(s) = D_x(s) \frac{\Delta p}{p_0}$$

D has units of length

• "Chromaticity" (η): the change in the tune caused by the different focal lengths for off-momentum particles

$$\Delta v_x = \mathcal{E}_x \frac{\Delta p}{p_0}$$
 (sometimes $\frac{\Delta v_x}{v_x} = \mathcal{E}_x \frac{\Delta p}{p_0}$)

Path length changes (momentum compaction)

$$\frac{\Delta L}{L} = \alpha \frac{\Delta p}{p}$$

Review: Equations of Motion

 Recall that in a curvilinear coordinate system, the equations of motion become

$$x'' = -\frac{B_y}{\left(B\rho\right)} \left(1 + \frac{x}{\rho}\right)^2 + \frac{\rho + x}{\rho^2}$$

$$y'' = \frac{B_x}{\left(B\rho\right)} \left(1 + \frac{x}{\rho}\right)^2$$

Note: s measured along *nominal* trajectory, v_s measured along *actual* trajectory

$$\dot{s} = \frac{ds}{dt} = \frac{\rho}{r} v_s$$

 We'll now consider consider the effect of of off momentum particle by comparing the "true" rigidity to the nominal rigidity

$$(B\rho)_{true} = (B\rho)\frac{p}{p_0} \rightarrow \frac{1}{\left(B\rho\right)_{true}} = \frac{1}{\left(B\rho\right)}\frac{p_0}{p} = \frac{1}{\left(B\rho\right)}\frac{p_0}{\left(p_0 + \Delta p\right)} \approx \frac{1}{\left(B\rho\right)} \left(1 - \frac{\Delta p}{p_0}\right)$$

Off-Momentum Particles

 If we substitute this into the equations of motion, and keep only linear terms, we end up with one new term in each equation

$$x'' = -\frac{B_{y}}{(B\rho)} \left(1 - \frac{\Delta p}{p_{0}} \right) \left(1 + \frac{x}{\rho} \right)^{2} + \frac{\rho + x}{\rho^{2}} = (...) + \frac{B_{y}}{(B\rho)} \frac{\Delta p}{p_{0}} = (...) + \frac{B_{y}}{(B\rho)} \delta$$

$$y'' = \frac{B_{x}}{(B\rho)} \left(1 - \frac{\Delta p}{p_{0}} \right) \left(1 + \frac{x}{\rho} \right)^{2} = (...) - \frac{B_{x}}{(B\rho)} \delta$$

 The parts in parentheses just give us our nominal equations of motion. We now invoke

$$B_{x} = B' y \approx 0$$

$$B_{y} = B_{0} + B' x \approx B_{0};$$
equations become
$$\frac{B_{y}}{(B\rho)} \approx \frac{B_{0}}{(B\rho)} = \frac{1}{\rho}$$

And our new equations become

$$x'' + \left(\frac{1}{\rho^2} + \frac{1}{(B\rho)}B'\right)x = \frac{1}{\rho}\delta; \qquad y'' - \frac{1}{(B\rho)}B'y = 0$$
New

 This is a second order differential inhomogeneous differential equation, so the solution is

$$x(s) = x_0 C(s) + x_0' S(s) + \delta d(s)$$

$$x'(s) = x_0 C'(s) + x_0' S'(s) + \delta d'(s)$$

Where d(s) is the solution particular solution of the differential equation

$$d'' + Kd = \frac{1}{\rho}$$

 We solve this piecewise, for K constant and find

$$K > 0: d(s) = \frac{1}{\rho K} \left(1 - \cos \sqrt{K} s \right)$$
$$d'(s) = \frac{1}{\rho \sqrt{K}} \sin \sqrt{K} s$$
$$K < 0: d(s) = -\frac{1}{\rho K} \left(1 - \cosh \sqrt{K} s \right)$$
$$d'(s) = \frac{1}{\rho \sqrt{K}} \sinh \sqrt{K} s$$

General Solution

USPAS Fundamentals, June 4-15, 2018

The general solution is now

$$x(s) = x_0 C(s) + x_0' S(s) + \delta d(s)$$

$$x'(s) = x_0 C'(s) + x_0' S'(s) + \delta d'(s)$$

Solution to the onmomentum case Off-momentum correction

We can express this in matrix form as

Usual transfer matrix

$$\begin{pmatrix} x(s) \\ x'(s) \\ \delta \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \\ \delta \end{pmatrix}$$

New Equilibrium Orbit

- We want to solve for an orbit of an off-momentum particle that follows the periodicity of the machine.
- This will serve as the new equilibrium orbit for off-momentum particles.

 "Dispersion" [L]

$$x(s,\delta) = D_x(s)\delta$$

This must satisfy

$$\begin{pmatrix} \delta D_{x} \\ \delta D'_{x} \\ \delta \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} & d \\ M_{21} & M_{22} & d' \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \delta D_{x} \\ \delta D'_{x} \\ \delta \end{pmatrix} \qquad \qquad \qquad \begin{pmatrix} D_{x} \\ D'_{x} \\ 1 \end{pmatrix} = \begin{pmatrix} \dots \end{pmatrix} \begin{pmatrix} D_{x} \\ D'_{x} \\ 1 \end{pmatrix}$$

Simplifying Assumptions

- For the most part, we will consider systems for which both of the following are true
 - "separated function": Separate dipoles and quadrupoles

$$\Rightarrow \frac{1}{\rho^2}$$
 and B' are never both non-zero at the same point

"Isomagnetic": All bend dipoles have the same field

$$\frac{1}{\rho^2} = \frac{1}{\rho_0^2}$$
 inside of bend dipoles
= 0 everywhere else

Example: FODO Cell

- We look at our symmetric FODO cell, but assume that the drifts are bend magnets that take up the entire space (a pretty good assumption)
- Each bends the beam by an angle θ

For a thin lens $d\sim d'\sim 0$. For a pure bend magnet

$$K = \frac{1}{\rho_0^{2}}: \quad d(L) = \frac{1}{\rho_0 K} \left(1 - \cos \sqrt{K} L \right) = \rho_0 \left(1 - \cos \frac{L}{\rho_0} \right) \approx \frac{1}{2\rho_0} L^2 \to \frac{1}{2} \frac{L^2}{\rho_0} = \frac{1}{2} \theta L$$

$$d'(L) = \frac{1}{\rho_0 \sqrt{K}} \sin \sqrt{K} L = \sin \frac{L}{\rho_0} \approx \frac{L}{\rho_0} \to \theta$$

Usual transfer matrix

Transfer Matrix

 We put this all together to get a transfer matrix of the form

$$\begin{pmatrix} x(s) \\ x'(s) \\ \delta \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} & d(s) \\ M_{21} & M_{22} & d'(s) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \\ \delta \end{pmatrix}$$

 Using our solutions from the previous page, we get

$$M = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2f} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L & \frac{L\theta}{2} \\ 0 & 1 & \theta \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{f} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L & \frac{L\theta}{2} \\ 0 & 1 & \theta \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L & \frac{L\theta}{2} \\ 0 & 1 & \theta \\ 0 & 0 & 1 \end{pmatrix}$$

For a ring:

$$\theta = \frac{2\pi}{2N_{cell}} = \frac{\pi}{N_{cell}} = \begin{bmatrix} 1 - \frac{L^2}{2f^2} & 2L\left(1 + \frac{L}{2f}\right) & 2L\theta\left(1 + \frac{L}{4f}\right) \\ -\frac{L}{2f^2} + \frac{L^2}{4f^3} & 1 - \frac{L^2}{2f^2} & 2\theta\left(1 - \frac{L}{4f} - \frac{L^2}{8f^2}\right) \\ 0 & 0 & 1 \end{bmatrix}$$

Solving for Dispersion

We must solve

$$\begin{pmatrix} D \\ D' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - \frac{L^2}{2f^2} & 2L\left(1 + \frac{L}{2f}\right) & 2L\theta\left(1 + \frac{L}{4f}\right) \\ -\frac{L}{2f^2} + \frac{L^2}{4f^3} & 1 - \frac{L^2}{2f^2} & 2\theta\left(1 - \frac{L}{4f} - \frac{L^2}{8f^2}\right) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} D \\ D' \\ 1 \end{pmatrix}$$

In your homework, you show that

$$D_{F,D} = \frac{\theta L \left(1 \pm \frac{1}{2} \sin \frac{\mu}{2}\right)}{\sin^2 \frac{\mu}{2}}$$

Evolution of Dispersion Functions

 Since the dispersion functions represent displacements, they will evolve like the position

$$\begin{pmatrix} D_{x}(s) \\ D'_{x}(s) \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & d(s) \\ m_{21} & m_{22} & d'(s) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} D_{x}(0) \\ D'_{x}(0) \\ 1 \end{pmatrix}$$

Putting it all together

Momentum Compaction Factor

• In general, particles with a high momentum will travel a longer path length. We have $C(p_0) = \oint ds$

So yes, we now have an ambiguous definition of α , too!

Slip Factor

 The "slip factor" is defined as the fractional change in the orbital period divided by the fractional change in momentum

$$T = \frac{C}{v}$$

$$\frac{\Delta T}{T} = \frac{\Delta C}{C} - \frac{\Delta v}{v} = \frac{\Delta C}{C} - \frac{\Delta p}{c}$$

$$= \alpha \frac{\Delta p}{p} - \frac{1}{\gamma^2} \frac{\Delta p}{p}$$

$$= \left(\alpha - \frac{1}{\gamma^2}\right) \frac{\Delta p}{p}$$

$$\Delta p$$

$$T = \frac{C}{v} \qquad \qquad \gamma < \frac{1}{\sqrt{\alpha}}: \quad \eta < 0 \quad \text{velocity dominates}$$

$$\frac{\Delta T}{T} = \frac{\Delta C}{C} - \frac{\Delta v}{v} = \frac{\Delta C}{C} - \frac{\Delta \beta}{\beta} \qquad \qquad \gamma > \frac{1}{\sqrt{\alpha}}: \quad \eta > 0 \quad \text{momentum dominates}$$

$$= \alpha \frac{\Delta p}{p} - \frac{1}{\gamma^2} \frac{\Delta p}{p} \qquad \qquad \gamma = \frac{1}{\sqrt{\alpha}}: \quad \eta = 0 \quad \text{"transition"}$$

$$= \left(\alpha - \frac{1}{\gamma^2}\right) \frac{\Delta p}{p} \qquad \qquad \text{Transition}$$

$$= \eta \frac{\Delta p}{\sqrt{\alpha}} \qquad \qquad \gamma_T = \frac{1}{\sqrt{\alpha}} \Rightarrow \eta = \left(\frac{1}{\gamma_T^2} - \frac{1}{\gamma^2}\right)$$

$$= \eta \frac{\Delta p}{\sqrt{\alpha}} \qquad \qquad \gamma_T = \frac{1}{\sqrt{\alpha}} \Rightarrow \eta = \left(\frac{1}{\gamma_T^2} - \frac{1}{\gamma^2}\right)$$

Special Cases for Slip Factor

Linacs:

$$\alpha = 0 \rightarrow \eta = -\frac{1}{\gamma^2}$$
 (always negative)

Simple Cyclotrons:

$$C = 2\pi\rho = 2\pi \frac{p}{eB} \rightarrow \alpha = 1 \rightarrow \eta = \left(1 - \frac{1}{\gamma^2}\right)$$
 (0 to positive)

- Synchrotrons: more complicated
 - Negative below γ_T
 - Positive above γ_T

$$\eta = \left(\alpha - \frac{1}{\gamma^2}\right)$$

Transition γ for Synchrotrons (approx.)

For a simple FODO CELL

$$\beta_{\text{max,min}} = 2L \frac{\left(1 \pm \sin \frac{\mu}{2}\right)}{\sin \mu}; \text{ and } D_{\text{max,min}} = \theta L \frac{\left(1 \pm \frac{1}{2} \sin \frac{\mu}{2}\right)}{\sin^2 \frac{\mu}{2}}$$

 If we assume they vary ~linearly between maxima, then for small µ

$$\langle \beta \rangle \approx \frac{2L}{\mu}; \langle D \rangle \approx \frac{4\theta L}{\mu^2} = 4\frac{L^2}{\mu^2 \rho} = \frac{\langle \beta \rangle^2}{\rho}$$

Also

$$v = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)} \approx \frac{1}{2\pi} \frac{2\pi R}{\langle \beta \rangle} \approx \frac{\rho}{\langle \beta \rangle}$$

(cont'd)

We just showed

$$\langle D \rangle \approx \frac{\langle \beta \rangle^2}{\rho}$$

$$v \approx \frac{\rho}{\langle \beta \rangle}$$

• So

$$\alpha_{c} = \frac{1}{C} \oint \frac{D}{\rho} ds \approx \frac{1}{\rho} \langle D \rangle \approx \frac{1}{v^{2}}$$

$$\gamma_{t} = \frac{1}{\sqrt{\alpha_{c}}} \approx v$$

- This approximation generally works better than it should
 - FNAL Booster: v=6.8, $\gamma_T=5.5$

Digression: Quadrupole Perturbation

We can express the matrix for a complete revolution at a point as

$$\mathbf{M}(s) = \begin{pmatrix} \cos 2\pi v + \alpha(s)\sin 2\pi v & \beta(s)\sin 2\pi v \\ -\gamma(s)\sin 2\pi v & \cos 2\pi v - \alpha(s)\sin 2\pi v \end{pmatrix}$$

If we add focusing quad at this point, we have

$$\mathbf{M}'(s) = \begin{pmatrix} \cos 2\pi v_0 + \alpha(s)\sin 2\pi v_0 & \beta(s)\sin 2\pi v_0 \\ -\gamma(s)\sin 2\pi v_0 & \cos 2\pi v - \alpha(s)\sin 2\pi v_0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos 2\pi v_0 + \alpha(s)\sin 2\pi v_0 - \frac{\beta(s)}{f}\sin 2\pi v_0 & \beta(s)\sin 2\pi v_0 \\ -\gamma(s)\sin 2\pi v_0 - \frac{1}{f}(\cos 2\pi v_0 - \alpha(s)\sin 2\pi v_0) & \cos 2\pi v_0 - \alpha(s)\sin 2\pi v_0 \end{pmatrix}$$

We calculate the trace to find the new tune

$$\cos 2\pi \mathbf{v} = \frac{1}{2} Tr(\mathbf{M}') = \cos 2\pi \mathbf{v}_0 - \frac{1}{2f} \beta(s) \sin 2\pi \mathbf{v}_0$$

• For small changes $\cos 2\pi (v_0 + \Delta v) \approx \cos 2\pi v_0 - 2\pi \sin 2\pi v_0 \Delta v = \cos 2\pi v_0 - \frac{1}{2f} \beta(s) \sin 2\pi v_0$

$$\Rightarrow \Delta v = \frac{1}{4\pi} \frac{\beta(s)}{f}$$

Total Tune Shift

The focal length associated with a local anomalous gradient is

$$d\left(\frac{1}{f}\right) = \frac{B'}{(B\rho)}ds$$

So the total tune shift is

$$\Delta v = \frac{1}{4\pi} \oint \beta(s) \frac{B'(s)}{(B\rho)} ds$$

Chromaticity

- In general, momentum changes will lead to a tune shift by changing the effective focal lengths of the magnets
- We already showed

$$\frac{1}{f} = \frac{B'l}{\left(B\rho\right)} = \frac{B'l}{\left(B\rho\right)_0} \frac{p_0}{p} \approx \frac{1}{f_0} \left(1 - \frac{\Delta p}{p_0}\right)$$

$$\Rightarrow \Delta v = -\frac{1}{4\pi} \sum_{i} \beta_{i} \frac{1}{f_{i}} \frac{\Delta p}{p_{0}} = \xi \frac{\Delta p}{p_{0}}$$

Where

$$\frac{1}{f_0} = -\int_0^L \frac{B'}{\left(B\rho\right)} ds$$

Chromaticity (Cont'd)

Recalling that in our general equation of motion

$$x'' + \left(\frac{1}{\rho^2} + \frac{B'(s)}{(B\rho)}\right)x = 0 \equiv x'' + K(s)x$$

We see that the effective focal length for a region is

$$\frac{1}{f_0} = \int_0^L \frac{B'}{\left(B\rho\right)} ds \Rightarrow \frac{1}{f_{eff}} = \int_0^L \left(\frac{1}{\rho^2} + \frac{B'}{\left(B\rho\right)}\right) ds = \int_0^L K(s) ds$$

 And we can write our general expression for the chromaticity as

$$\xi = -\frac{1}{4\pi} \sum_{i} \beta_{i} \frac{1}{f_{i}} \Longrightarrow \xi = -\frac{1}{4\pi} \oint \beta(s) K(s) ds$$

Chromaticity in Terms of Lattice Functions

 A long time ago, we derived the following constraint when solving our Hill's equation

$$w''(s) + K(s)w(s) - \frac{k}{w^{3}(s)} = 0 \Rightarrow \left(\sqrt{\beta}\right)'' + K\sqrt{\beta} - \frac{1}{\beta^{3/2}} = 0$$

$$\beta(s) = w^{2}(s)$$

$$\alpha(s) = -\frac{1}{2}\beta'(s)$$

$$-\alpha^{2} + \beta\gamma = 1$$

$$\left(\sqrt{\beta}\right)'' = -\frac{\alpha'}{\sqrt{\beta}} + \frac{1}{2}\frac{\alpha}{\beta^{3/2}}\beta' = -\frac{\alpha'}{\sqrt{\beta}} - \frac{\alpha^{2}}{\beta^{3/2}}$$

$$\Rightarrow K\beta^{2} - \beta\alpha' - \alpha^{2} = 1$$

$$\Rightarrow K\beta^{2} - \beta\alpha' - \alpha^{2} = 1$$
Multiply by $\beta^{3/2}$

- (We're going to use that in a few lectures), but for now, divide by β to get
- So our general expression for chromaticity becomes

$$K\beta = \frac{1+\alpha^2}{\beta} + \alpha' = \gamma + \alpha'$$

$$\xi = -\frac{1}{4\pi} \int (\gamma(s) + \alpha'(s)) ds$$

Chromaticity and Sextupoles

we can write the field of a sextupole magnet as

$$B(x) = \frac{1}{2}B''x^2$$
 (often expressed b_2x^2)

 If we put a sextupole in a dispersive region then off momentum particles will see a gradient

 $B'(x = D\delta) \approx B''D \frac{\Delta p}{\Delta r}$

which is effectively like a position p_0 dependent quadrupole, with a focal length given by

$$\frac{1}{f_{eff}} = \frac{B''}{\left(B\rho\right)} LD \frac{\Delta p}{p_0}$$

- · So we write down the tune-shift as
- Note, this is only valid when the motion due to momentum is large compared to the particle spread.

$$\Delta v = \frac{1}{4\pi} \beta \frac{1}{f_{eff}} = \frac{1}{4\pi} \frac{\beta B''}{(B\rho)} LD \frac{\Delta p}{p_0} \equiv \xi \frac{\Delta p}{p_0}$$
$$\Rightarrow \xi_S = \frac{1}{4\pi} \frac{\beta B''}{(B\rho)} LD$$