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The Journey Begins...

- We will tackle accelerator physics the way we tackle most
problems in classical physics — ie, with 18t and 19th
century mathematics!

- As we discussed in our last lecture, the linear term in the
expansion of the magnetic field is associated with the
quadrupole, so let’s start there...
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Quadrupole Magnets*

- A positive particle coming out of the page off center in the horizontal
plane will experience a restoring kick

B_(x)] B'Ix
O~ | :>
(Bp)  (Bp)

*or quadrupole term in a gradient magnet f

_(Bp)
B
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What about the other plane?

Defocusing!

Luckily, if we place equal and opposite pairs of lenses, there
will be a net focusing regardless of the order.

/

=>pairs give net focusing in both planes -> “FODO cell”
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General Approach

- The dipole fields in our beam line will define an ideal
trajectory.

- The position along this trajectory (s) will serve as the
independent coordinate of our system.

- We will derive and explicit solution for equations of
motion for linear focusing or defocusing effect due to
deviation from this idea trajectory

- Linear field gradients (quadrupole term)
- Curvilinear coordinate system (centripetal term)

- Everything else will be treated as a perturbation to this
explicit solution
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Formalism: Coordinates and Conventions

- We generally work in a right-handed coordinate system with x
horizontal, y vertical, and s along the nominal trajectory (x=y=0).

.7
X ~
S
Note: s (rather than {) is
the independent variable
) — dx
- Define derivatives wrt s 7 —=y=~f
"""""""" ds
xr
S —
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Initial Conditions and Phase Space

- Our general equations of motion will have the form
d*x
ds?

2
dSJZ/ +Ky(s)y=0

- These are 2"d order linear homogenous equations, so

we need two initial conditions to fully determine the

motion

+K (s)x=0

“phase space”

unique initial phase space point & unique trajectory
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Transfer matrices
- The simplest magnetic lattice consists of quadrupoles and the spaces
in between them (drifts). We can express each of these as a linear
operation in phase space.

Quadrupole:

1

x'=x'(0)—%x(0) =>(x')= -7 ro

P ) =20+ 52(0) =>(x(s))_(1 s)(x(O)

s— x'(s)=x"(0) x'(s) 0 1)x'(0)
- By combining these elements, we can represent an arbitrarily complex
ring or line as the product of matrices.

M=M,.MM,

x=x(0) X 10 ( x(0) )

|
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Example: Transfer Matrix of a FODO cell

- At the heart of every beam line or ring is the basic “FODO” cell,
consisting of a focusing and a defocusing element, separated by drifts:

f -f
Remember: motion is
L W L usually drawn from left
- to right, but matrices
/ A act from right to left!
L (LY . I
1L101L10 -—=|=| 2L+—
e
R A S W Lot
f f

Sign of fflips in other plane

- Can build this up to describe any beam line or ring
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Where we're going...

- It might seem like we would start by looking at beam lines and them
move on to rings, but it turns out that there is no unique treatment of a
standalone beam line

- Depends implicitly in input beam parameters

- Therefore, we will initially solve for stable motion in a periodic system.

- The overall periodicity is usually a “ring”, but that is generally divided
into multiple levels of sub-periodicity, down to individual FODO cells

- In addition to simplifying the design, we’ll see that periodicity is important to

stability ® Our goal is to de-couple the problem
-~ -\ . Periodic “cell into two parts
\ = The “lattice”: a mathematical
( description of the machine itself,
} based only on the magnetic
\ / fields, which is identical for each
~— v identical cell
Mmg =M MM =M, = A mathematical description of the

ensemble of particles circulating
in the machine (“emittance”);
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Periodicity

- We will build our complete system out of “cells”,
assuming each one to be periodic

- Example: FODO cell
<| FODO FODO FODO FODO FODO [

h

: FODO :

- Periodicity condition  B(x,y,s+C)=B(x,y,s)

N\

“circumference”
= period of cell
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Quick Review of Linear Algebra

- In the absence of degeneracy, an nxn matrix will have n “eigenvectors”,

defined by:
M, - M, Y 14
oo ol =EA
Mnl o Mnn ‘/n . Vn

- Eigenvectors form an orthogonal basis
« Thatis, any vector can be represented as a unique sum of eigenvectors
- In general, there exists a unitary transformation, such that
0
M'=UMU"'=| : " ! |5V/=UV,=| |
0 - 2 :

n

- Because both the trace and the determinant of a matrix'are invariant under a
unitary transformation:

Tr(M)=M, + M, +-+M, =24 +A++A,
Det(M) =4, x4, X---X 4,
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Stability Criterion

We can represent an arbitrarily complex ring as a combination of individual
matrices
M, =M, .MMM,

ring

We can express an arbitrary initial state as the sum of the eigenvectors of this
matrix

(x,) — AV, + BV, = M( x,) = ALV, +BAYV,
X X

After n turns, we have M"( x,) = Aﬂ,fVl + B/‘{;V2
X

Because the individual matrices have unit determinants, the product must as

well, so
Det(M)=AA, =1 1,=1/2,

IS
Stability Criterion (cont'd)
We can therefore express the eigenvalues as
A =e“; A, =e™"; whereaisin general complex
However, if a has any real component, one of the

solutions will grow exponentially, so the only stable values
are

A =e"; A, =e™; where uisreal
Examining the (invariant) trace of the matrix
Ti[M]= ¢ + e = 2cos u
So the general stability criterion is simply

abs(Tr[M]) <2
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Example
- Recall our FODO cell 2

L (L
.| =5 =7
T L A IR A

f -f

- Our stability requirement becomes

2
abs| 2 - L <2=|L=<2f
f
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Twiss Parameterization

- We can express the transfer matrix for one period as the sum of an identity

E. Prebys, Accelerator Fundamentals: Transverse Motion

matrix and a traceless matrix

M(s+C,s) = A(l O) + %( als) ) )] “Twiss Parameters”

0 1 _ },(S) _ a(s) not Lorentz parameters!!

- We require the second matrix to have Det()=1, so —a(s)2 +B(s)y(s)=1 |

- The requirement that Det(M)=1 implies
A*+B*=1

- We can already identify A=Tr(M)/2=cosy, so we can identify B=siny and write

10 a(s)  B(s)
M(s+C,s) =
. Note(;;t ) COSﬂ(O 1 ) o ﬂ(‘ r(s) —oa(s)

e ( a(s)  p(s) )( as)  Bs) )=(02(S)—ﬁ(S)}/(S) 0

=>» only two independent

)Elcos,u+Jsiny

Ty —a) \-y(s) —als) 0 @ (s) - B(s)y(s)

- So we can identify it with i=sqrt(-1) and write M(S + C,S) = e’uJ(s)
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"Equations of Motion

- General equation of motion

- . = dp d =
F=evxB=—=—ymR=ymR
a a ™
= 3 x py $
=>R=&=ivx v,V =£(—vsByfc+vaXj/+(vXBy—vyBxk)

moM™p B o
- For the moment, we will consider motion in the horizontal (x) plane, with a
reference trajectory established by the dipole fields.

o ¥

r=p+x
X Particle trajectory > —7r
A — Reference trajectory
\éﬁ\\
PN
- Solving in this coordinate system, we have
R =ri+yp
R =ix+rx+yy =7x+ré + 3y
R o=(eid)e (G4 rb e ri)s 39 =i%+ 2068 45— 654 35

f—réz)?+(2f9+ré)§+j}j/
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. . y
Equations of Motion (cont'd)
- Equating the x terms
- rH'Z - _ evSBJ’ Note: s measured along nominal
ym trajectory, v, measured along actuaj
trajectory
evB,  evB,
"y, p ds
}’WIVS p S=—= —Vs
VB, dar r
(Bo)
- Re-express in terms of path length s. Use
d _dsd d __d P v
_=__=vS£_3_2= ng — 0=_5
dt dt ds rds dt r) ds r
- Rewrite equation , , ,
pYdr_ (v __nB
“r ) ods® r (Bp)
( terms) => r" VB, r’ -
rearrange terms, = — —_—
(Bp) p’ o 2
B
(use r=p+x) = x'=- 1+£ +p+2x, y”= Bx (1_'_7)
Bol o) p B\ p
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Equations of Motion

- Expand fields linearly about the nominal trajectory

B,(x3,5) = B,(0.0,5)4 2280 B8O OB
x ay no x dipole ay
B (s 0B (s 0B (s aB (s
B(x,y,s)=B(0,0,s)+ ) )x+ /() ——B + \( )x=@+ﬂx
y y ax ay no coupling ax p ax

- Plug into equations of motion and keep only linear terms in x and y

(Bp) , 9B,(s)
T . i/ 1 ) 2 1)1
x"=- L (1+£) LA L x-—x+F+
o

= T Y — X
(Bp) ) P (Bp) ox = p° o’
= e L+ 1 0B,(s) o Looks “I_(inda §orta like” a
0 7(310) o harmonic oscillator
Y 1 9B.(s)
V- =0
(Bp) oy
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Comment on our Equations

- We have our equations of motion in the form of two “Hill's Equations”

X +K (s)x=0 K >0= "focusing"
Y +K,(s)y=0 K <0= "defocusing"
- This is the most general form for a conservative, periodic, system in which

deviations from equilibrium small enough that the resulting forces are
approximately linear

- In addition to the curvature term, this can only include the linear terms in the
magnetic field (ie, the “quadrupole” term)

K(s) periodic!

oB B
s B, =—

T

S JB,
Note: V><B=0_>_y:ﬂ
Jx  dy

10
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Comments (cont'd)
- The dipole term is implicitly accounted for in the
definition of the reference trajectory (local curvature p).

- Any higher order (nonlinear) terms are dealt with as
perturbations.

- Rotated quadruple (“skew”) terms lead to coupling,
which we won'’t consider yet.
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General Solution

- These are second order homogeneous differential equations, so the explicit
equations of motion will be linearly related to the initial conditions by

.X(S) mll(s) mlz(s) Xo
x'(s) My, () My (s) X

- Exactly as we would expect from our initial naive treatment of the beam line
elements.

6/3/18
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158
Piecewise Solution
4
Again, these equations are in the form X + K(S)x =0

For K constant, these equations are quite simple. For K>0 (focusing),
it's just a harmonic oscillator and we write

x(s) = Acos(\/Es + 5) = acos(x/fs)+bsin(\/fs)
x'(s) = —JKa sin(\/fs)+ JKb cos(\/fs)

In terms if initial conditions, we identify ,

and write a=x.b= %
(x(s)) _ cos(\/Es) %sin(ﬁs) (xo)
x() -JK sin(\/f S) cos(\/f s) Xo

)

For K<0 (defocusing), the solution becomes

» cosh([K]s) LKsinh( [Ks) .
[ ) [Rson( [T ch_osh(m) (J

For K=0 (a “drift”), the solution is simply
x(s) = x, + X8

x(s) 1 s\(x,
= ! = '
x'(s) 0 1fx,
We can now express the transfer matrix of an arbitrarily complex beam line

v M=MM,M,. .M,

But there’s a limit to what we can do with this

6/3/18
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Closed Form Solution

Our linear equations of motion are in the form of a “Hill's Equation”

Consider only periodic systems
x"+K(s)x=0;, K(s+C)=K(s) at the moment

If Kiis a constant >0, then  x(s) = Acos(\/Es + 5) so try a solution of the form
x(s) = AW(S) COS(I/}(S) + 5) assume w(s + C) = w(s), BUT
If we plug this into the equation, we get Y(s+C)=y(s)
X'+ Kx = AW —wip'? + Kw)cos(y +6)- A2w '+ wy")sin(y +6)=0
Coefficients must independently vanish, so the sin term gives
2w'y +wy" =0 2ww'z,l/+w21//"=(w21//’) =0:>z‘//'=F

mutliply by w

If we re-express our general solution

= w4 A si We’'ll see
x, o 1f:0$1//+ fsmg)) ) N this much
X = (Alw + Awy )cos1// +(A2w - Awy )smz// later
2
=(Alw’+A2k)cos1// +(A2w’—Alk)sin1p W”_k_+]{w=()
w w W

)
Solving for periodic motion L
Plug in initial condition (s=0=>¥=0) 1= W
Define phase advances over one period A = XoW = X, W
S, =siny(C);C, =cosy(C) : k
and we have
X(C)=X0CC+(7X°W _XOWW) . , ,
ww w
, (CC_TSC) -5
ww
=|C -=—=$ |x +—& x'
( ‘ C)X°+ o [ x(C) ] ) (WW)Z [ X, )
= +
. , xww' xw? xk X'(0) k ww' x'
X (C)=XOCC+( . —OT—ﬁ)SC Wk S, (CC TSC) 0
12 !
=(—L2— )Scx0+[CC+ Sc)x'
w
This form will make
But wait! We've seen this before... sense in a minute

6/3/18

13



m USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Transverse Motion

Twiss representation of a Period

- We showed a flew slides ago, that we could write

1 0
M(s +C,s) =cos H(O : ) +sin y(_ay((ss)) —/5652))
~ cos i+ a(s)sin u P(s)sin u
_( —y(s)sin u cos,u—a(s)sinu)

2

w
- We quickly identify ~ #(5) ==~

MO L) L
k 2ds\ k 2 ds
Phase advan_ce 1+ (s)
over one period 7(s)= I )S f and y always positive!
s

- We also showed some time ago that a requirement of the Hill’'s
Equation was that

14 =—2=%:¢(C)=y= fmds w_Super important!

Remember forever!
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Solving for the Lattice Functions

- If we calculate (or measure) the transfer matrix of a
period, we can solve for the lattice functions at the ends

cosu+asinu Bsinu

—ysinu cosu—oasinu

sinu Sign of M,, resolves sign
_ M, —cosp ambiguity of sine function
sinu
/- 1+0?
B

6/3/18
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Evolution of the Lattice Functions

- If we know the lattice functions at one point, we can use the transfer matrix to
transfer them to another point by considering the following two equivalent
things

- Going around the period, starting and ending at point a, then proceeding to point b

- Going from point a to point b, then going all the way around the period
M(s, +C,s,)M(s,,s,) = M(s,,s, ) M(s, +C,s,)
M(s, +C,s,) =M(s,,s,)M(s, + C>Sa)M_1 (55,5,)

Recall: 3s) = ( als) A ]

-y(s) -als)
M(s+C,s)=Icosu+]J(s)sinu
Icosu+](s,)sinu= M(sb,sa](lcoslu ](sa)sinu)M'l(sb,sa)
=Icosu +(M(sb,sﬂ)](sa)M’l(sb,sa))sinu
=lcosu+]J(s,)sinu
=](s,)=MCs,5,)J(s,)M"'(s,.5,)
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Evolution of the Lattice functions (cont’d)

my  mp,

- Using M(s,.s,) =
m21 mll

]=M'l(sb,sa)(

- We can now evolve the J matrix at any point as

my, —mp, )

m21 m22

J(sb)=( als,)  P(s,) )=(m“ m, )( a(s,)  p(s,) )( My, _mIZ)

=y(s,) —a(sy) my my \=y(s,) —als)\-my my,

- Multiplying this mess out and gathering terms, we get
a(s,) (ml 1My + M1y, ) (_ m, ny, ) (_ my,my, ) a(s,)
B(s,) | = (_ 2m11m12) (mlzl) (mlzz) B(s,)
r(s,) (_ 2m21m22) (mzzl) (m222) r(s,)

6/3/18
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m 'USPAS Fundamentals, June 4-15, 2018

Examples
- Drift of length L:
o(s) 1 0 -s |[ a0 o(s) =0y =Y,8
M:(l s J: Bs) |=| =25 1 52 || BO) |= Bs)=By-2et,s 47,5
0 1
7(s) 0 0 1 7(0) Y()=7,

- Thin focusing (defocusing) lens:

1 :
Lo a 1 :7 0 a, a=o,x—f
M= ¢l 1= pl=] 0 L 0B |=8=5
f ! +2 —1 ! 1
Y _? IE Vo 4 =701f0’0+7 o
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Betatron motion

- Generally, we find that we can describe particle motion in terms of
initial conditions and a “beta function” 5(s), which is only a function of

location in the nominal path.
B(s) o< w(s)?

/ {
Lateral deviation |, x(s)= A/B(s) COS(I//(S)+6)

in one plane
ds\ The “betatron function” (s ) is
(

N
"
Phase Y(s)= f Bls) — effectively the local wavenumber
advance 0 and also defines the beam
envelope.

Closely spaced strong quads -> small § -> small aperture, lots of wiggles

Sparsely spaced weak quads -> large f§ -> large aperture, few wiggles

6/3/18

16



m USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Transverse Motion

Behavior Over Multiple Turns
- The general expressions for motion are X = A\/BCOS‘IW’ =y (s)+06

’

A .

- We form the combination r= —ﬁ(acoscp +sing)
yx* +200x + Bx’
=A’ (7/ Bcos® ¢ —2a’ cos” p — 20 sindCos @+ o’ cos” @ +sin” ¢+ 20 si osq))
=A’ ((y B-a? )cos2 ¢ +sin’ ¢)
= A® = constant
- This is the equation of an ellipse.

X

ﬁ
Area = TTA?
Ay
/7T :

'

Particle will return to a different point
0 on the same ellipse each time around
the ring.
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Symmetric Treatment of FODO Cell

- If we evaluate the cell at the center of the focusing quad, it looks like

A
2f £ 2f
Leading to the transfer Matrix

1 0 L L 1 0 L L 1 0
MZ—L1(01J11[01]—LI
2f f 2f
2
I 2L(1+£)
_ 2f 2f Note: some textbooks
L I | 12 have L=total length
e T

6/3/18

17



m USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Transverse Motion

Lattice Functions in FODO Cell

We know from our Twiss Parameterization that this can be written as

2
- o B , ,
2f 2f _( cospl+a,sinu B, sin

L I 15 —Y,sin 1L cos [ — 0Ly sin i
T T
From which we see that the Twiss functions at the middle of the magnets are
0y =0 recall
cosp=1- L —1-2sin* & a=_lﬁ ’)ﬁ—azzlﬁyozl
21 2 2 ds Bo

. L
—>Sln§=2—; Flip sign of f to
g?other plane

in 1= L
B,sinp = 2L(1+ Zf)

. s &)
ﬁOZZL(1+slnl;):ﬁ:i |:> B.. =2L(1&

min

sin sin i
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Lattice Function in FODO Cell (cont'd)

- As particles go through the lattice, the Twiss parameters will vary periodically:

\ \f /
/ A \

: —_—

4+ et

f = max B = decreasing B =min B = increasing

=0 o>0 a=0 <0 m h
ti t

> maximum > focusing =>minimum > defocusing olon & ead

point bounded by

‘x(s)‘ < A B(s)

6/3/18
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Interlude: Some Formalism
- Let’s look at the Hill's equation again... x"+ K(s)x =0

- We can write the general solution as a linear combination of a “sine-like” and
“cosine-like” term x(s) = aC(s) + bS(s) where

C(0)=1;5(0)=0
C'(0)=0;5'(0) =1

- When we plug this into the original equation, we see that
a(C"(s) + K (s)C(5))+b(S"(s) + K(5)S(5)) = 0

- Since a and b are arbitrary, each function must independently satisfy the
equation. We further see that when we look at our initial conditions

x(0)=aC(0)+bS(0)=a=a=x,
x'(0)=aC'(0)+bS'(0)=b=b = x,

- So our transfer matrix becomes

x(s) M X, _ x(s) B C(s) S(s)\(x,
e R M R Y
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Closing the Loop

- We’ve got a general equation of motion in terms of initial conditions and a
single “betatron function” B(s)

x(s) = AJB(s) cos(y (s)+ ) w(s) =£%

- Important note!
+ f(s) (and therefore a(s) and y(s)) are defined to have the periodicity of the machine!
- In general Y¥(s) (and therefore x(s)) DO NOT!
- Indeed, we'll see it’s very bad if they do

d. 1
. =5 Ncell Aucell
p(s) 2m

- So far, we have used the lattice functions at a point s to propagate the particle to the
same point in the next period of the machine. We now generalize this to transport the
beam from one point to another, knowing only initial conditions and the lattice functions

at both points
x(s) = 4/ B(s) cos(y (s) +6)

¥'(s) = A%% d/;is) cos(y(s) + 8)- 4/B(s) %siﬂ(z/}(s) +0)

Define “tune” as the number of v= if
pseudo-oscillations around the ring 27T

=-4 (a(s)cos(y(s)+6)+sin(y(s)+6))

B(s)

6/3/18
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IS
We use this to define the trigonometric terms at the initial point as
1

AJB,
\/FO a,

S, = Sin(1//(so) + 5)= -X 4 Xo AJB,
We can then use the sum angle formulas to define the trigonometric terms at
any point ¥(s,) as

C, = cos(y(s) + ) = x,

cos(z/f(sl)+5)s C = cos(z/}(so)+c5 +A1/1)= C,cosAy - S,sin Ay

= xO(A\;/?OcosAI/J + Af/!o/o’io sin Aw] +X, VA

y sin Ay
sin(z//(sl)+5)s S, = sin(w(so)+6 +Ay)= S,cosAy +C,sin Ay

W B S __ % _ /\/Fo
—xO[A\//?OsmAz/J AmcosAwJ X, y

sin Ay

1§18
General Transfer Matrix

We plug the previous angular identities for C, and S, into the general

transport equations X, = A\/F1 cos(z,l}1 + 5) = A\/ECI

, 1
X = _Aﬁ(alcl +Sl)

And (after a little tedious algebra) we find

g (e~ )cos Ay —(1+ 001, )sin Ay ) B (cosAy —a; sinAy
VBB B

\/E(COSAW+(XO sinAy) B, B, sin Ay
Ao By Xo
A 1)

1

This is a mess, but we'll often 5

restrict ourselves to the extrema ZLeosAy BB sinAy

of B, where 1 dp —(%\_| VA %o
a=————"=0 Xl/ _ 1 /j’o (I)

sin Ay —cosAy

2 ds JB.B, A

i

6/3/18
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Conceptual understanding of 3

- It's important to remember that the betatron function represents a bounding
envelope to the beam motion, not the beam motion itself

Normalized particle trajectory Trajectories over multiple turns
: o[BS ?

-2 Sinelike

x(s) = AL ()] sinly(s) + 8)

s

ds B(s)is also effectively the local wave
y(s)= [
0

number which determines the rate
B(s) —
of phase advance

Closely spaced strong quads =» small 3 = small aperture, lots of wiggles

Sparsely spaced weak quads = large 3 = large aperture, few wiggles
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Betatron Tune

Particle trajectory
/ - As particles go around a ring, they
Ideal will undergo a number of betatrons
orbit\ oscillations v (sometimes Q) given
by

1 ds

=5 )

- This is referred to as the “tune”

- We can generally think of the tune in two parts:

Integer : magnet/ _~ 6.7 ™~ Fraction:

aperture Beam Stability
optimization
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18
Tune, Stability, and the Tune Plane

- If the tune is an integer, or low order rational number, then the effect of any
imperfection or perturbation will tend be reinforced on subsequent orbits.

- When we add the effects of coupling between the planes, we find this is also
true for combinations of the tunes from both planes, so in general, we want to

avoid
kv, =k v, =integer = (resonant instability) g "N\, i/’f’
\ ! E ,\/ 2 < 3
“small” integers = Avoid lines in _~7 E e = - ,/&/
the “tune plane” § Ea =K

e fract. part of X tune
- Many instabilities occur when something perturbs the tune of the beam, or part

of the beam, until it falls onto a resonance, thus you will often hear effects
characterized by the “tune shift” they produce.

1.0

- First “separated function” lattice
« 1 km in radius
- First accelerated protons from 8 to 400 GeV in 1972

[ 195" 2" -
OF Bl B B b2 a0 B2 B2 B B QF
ol

design report
an rep aF B @ ez Bz 8 BioF

national U t iy Sue— T
1968 a :: c : le r? tor " s'mx;;";:'di“/‘c..; with Medium Straight Section (M)
aboratory

' 2.25" ——

ore w8 & a0 on Long Straight Section M oo m s2 B2 Goe 82 s2 81 B OF

R e -

215" 525"

195' 2"

Cell with Long Straight Section
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Beam Parameters

8 to 400 GeV*

The Main Ring accelerated protons from kinetic energy of

Parameter Symbol Equation Injection ‘ Extraction
proton mass m [GeV/c?] 0.93827
kinetic energy K [GeV] 8 400
total energy E [GeV] K +mc? 8.93827 400.93827
momentum p [GeV/c] JE = (e’ 8.88888 400.93717
rel. beta B (pe)/E 0.994475 0.999997
rel. gamma v E/(mc) 9.5263 427.3156
beta-gamma By (pc)!(mc?) 9.4736 427.3144
rigidity (Bp) [T-m] | PIGeV1/(.2997) 29.65 1337.39
*remember this for problem set
158
From design report
Cell Parameters L=29.74 m
Phase advance p=71°
’\ U /‘ Quad Length |;,4=2.13 m
V L A L \‘ Beta functions (slide 36)
(1 +sin ‘; ]
2f £ 2f Bwemin = ZLW
195" 2" 71
(iF B Bl B2 B2 v 82 B2 B B OF (1 ismTJ
+ % = 2(29.74)W

Normal Cell (C)

Straight
Magnet focal length
. u L 29.74
= =———— =2561
s BEAETYeT /2)
Quad gradient (slide 12)
(Bp) - B

(Bp)  (1337.39) -
LoiB Loof  (213)(256) =

2 2f

23
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Beam Line Calculation;: MAD

- There have been and continue to be countless accelerator modeling programs; however MAD
(“Methodical Accelerator Design”), started in 1990, continues to be the “Lingua Franca”

main_ring.madx

98.4m (exact) vs.

!
! One FODO cell from the FNAL Main Ring (NAL Design Report, 1968)
!

i)eam, particle=proton,energy=400.938272,npart=1.0E9;
LQ:=1.067; half quad
LD:=29.74-2*LQ; =

L Ki=1EhL

qf: QUADRUPOLE, L=LQ/
d: DRIFT, L=LD;
qd: QUADRUPOLE, L=LQ, K1=-.0195;

fodo: line = (qf.d.qd.qd.d.af); «——— build FODO cell

use, period=fodo;
match,sequence=FODO; € force periodicity
SELECT,FLAG=SECTORMAP,clear;
SELECT,FLAG=TWISS,col 1=

TWISS,SAVE; «— .
calculate Twiss parameters

PLOT,interpolate=true,,colour=100,HAXIS=S, VAXIS1=BETX,BETY;
PLOT,interpolate=true,,colour=100,HAXIS=S, VAXIS1=ALFX,ALFY;

betx,alfx,bety,alfy,mux,muy;

B (m). B (m

24.7m
vs. 26.4m

=

a

99.4m (thin lens) ~
= 10o.

-0.5
-1.0

E. Prebys, Accelerator Fundamentals: Transverse Motion

0

MAD-X 5.00.00_14/03/14 113124

25 fodo

s(m)

30. 40. 50. 60.

MAD-X 5.00.00_14/03/14 11.31.24

20
5
1.0
05
0.0

stop;

-1.5
=20

=25

0.0 10. 20. 30. 40. 50. 60.
5 (m)
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Evolution if Twiss Parameters (slide 31)
il o 1]

E IZZ' odaﬁ\ ﬁ‘ MAD-X 5.00.00 14/03/14 11.31.24 . Thin focusing (defocusing) Iens
§ 80. , 1

7. a'=o,x—f

1 0

M=l 2L g |= F=h

30. f ’ 2

20'0.0 10. :2{’(3‘) 30. 40. 50. 60. y =y0 i_ao +Fﬁ0
) R - Drift

o a(s)=a,-7,s

05 M= 1 s = 2

10 “l o1 B(s)=B,-2a,;s+y,s

r(s)=7,

E. Prebys, Accelerator Fundamentals: Transverse Motion
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Digression: Intuitive vs. Counterintuitive

- We have derived the generic transfer matrix to be

%(cosAvlﬂxo sinAl//) JMSinAW
Xy o
[ X ﬁ((ao—al)cosAv/—(Haoal)sinAl//) %(cosm//—oz1 sinAy) [

1

- Which means a particle on the axis (x,=0) with an angle
x’=6 will follow a path given by

X=,4 /ﬁO[J’(s) sinAy(s)0

- But a particle doesn’t “know” about lattice functions, so
does this make sense
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Example: Initial angle in a Drift Section

B(s)

- Before you knew anything about beam physics, you would have said

x=50
- Now you would say

X =, / B,B(s)sinAy(s)0

- How can both of these be true?

6/3/18
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Evolution of Phase Angle

B(s)=8, oS+ 7,8

1(s)=7,
Aw=j~ ds =j< ds =ls ds
0 B(S) 0 y052—2a05+ﬁ0 yo 0 2 2 05+&
Yo Yo
=ls ds 17 ds 17 ds
Yo 0( _%)2 o B To'o (s-ﬂ)z % +1,By 7o 0( _%)24._0
) v, o % %o

" tan™ (yos -q, ) —tan! (—ao)

=tan™ (yos - ao) .

=tan‘l(—ao(s))—tan‘l(—ao) X+l u

e =
os) === y(s) =

m USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Transverse Motion

tanf

Sine of Phase Angle S0

1

V1+tan%6

cosf =

sinAy = sin(uj(s)— 1/;0) =siny(s)cosy, —cosy(s)siny,
tany(s) tany, tany(s)-tany,

B \/1+tan21,1)(.<>‘)\/1+tan21p0 ) \/1+tanz1,0(.<;)\/1+tar121,1;0 ) \/1+tam21,u[s)\/1+tem21,u0
-a(s)+a, —Q, Y, S+

= = = yOS

Jiras)1ra? BB, rBErb,
S

e 0 7(s)=7,

—— x=\B,B(s) ——0
: ’ JB(s)B,

=560
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Examples: Different Initial Conditions
a(s) B(s) Ay(s) JB.B(s)sinAy(s)
By=2m e E
a,=0 E x
ﬁo =50m B R Eu
a,=5
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Characterizing an Ensemble: Emittance

"o If each particle is described by an ellipse with a particular
X' | VFe \ amplitude, then an ensemble of particles will always

>

TJ— remain within a bounding ellipse of a particular area:
ye

x €
yx* +20xx’ + Bx’ =€ or —

Area = me

Either leave the = out, or include it explicitly as a “unit”. Thus

» microns (CERN) ands_
These are really the same
« -mm-mr (FNAL) <— y
Are actually the same units (just remember you'll never have to explicity use
1T in the calculation)
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Definitions of Emittance

- Because distributions normally have long tails, we have to
adopt a convention for defining the emittance. The two
most common are

- Gaussian (electrgm machines, CERN):
£ contains 39% of the beam

€=

X
o, =Bx

- 95% Emittance (FNAL):

2
X

€5 = ; contains 95% of the beam

X

_)0.x= ﬁxEQS
V 6

- In general, emittance can be different in the two planes,
but we won’t worry about that for now.
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Emittance and Beam Distributions

- As we go through a lattice, the bounding emittance remains constant

\ \/ /
/ I \

I

S
>
s
' x ! X X
X
% %) x x {% x :lT:: x

large spatial distribution small spatial distribution
small angular distribution large angular distribution

6/3/18

28



m USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Transverse Motion 57

Distributions, Emittance, and Twiss Parameters

- The relationship between the lattice functions, RMS emittance and
moment distributions is
1
= NEXZ:JE

N
1 .
=NEXX =—-0€
- We can turn this around to calculate
the emittance and lattice functions \/ﬁ
. . . €E=4/0."O0, -0 ,
based on measured distributions x Tx T
O,2
p=—=
€
2 2 2 2\ 2 2 2
oo/ -0, =(ﬁy—a )e =€ ‘ Y=GX
€
O'XX,
a:__
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Adiabatic Damping*

- In our discussions up to now, we assume that all fields scale with momentum,
so our lattice remains the same, but what happens to the ensemble of
particles? Consider what happens to the slope of a particle as the forward

momentum incrementally increases.
y PON R T '(1-A—”)
D po+Ap Py
p. X -; D, A
0 ' ' p
=M =-x'—
Py Potlp Py

- If we evaluate the emittance at a point where a=0, we have

€= ('erz + BTx’2)
de=2B,x'dx’=-28,x" dp _ —2€d—psin2 (w+6)
p p

x'=\Jep,sin(y+d) (de)= —Zed—p<sin2 (w+ 6)> = —ed—p = pde+edp =0 = ep = constant = ¢, p,
P p
= ﬁism(w+6) (60)/ ﬁ ) P ) )
i ¢ Po _ 070P0) 1S “Normalized emittance”

€=¢—= 5
p B B =constant!

*only true for protons!
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158
Consequences of Adiabatic Damping

As a beam is accelerated, the normalized emittance remains
constant

Actual emittance goes down down S oc 1

€= —
Br p

Which means the actual beam size goes down as well

betatron function RMS emittance

e —1
o = BXEZ BXGN or Bx€95 oc 1

" By 6By p

vic 7”7
The angular distribution at an extremum (a=0) is

Yo _ / N
Br \B.By

We almost always use normalized emittance for protons

95% emittance

[T
Example: FNAL Main Ring Revisited

We normally use 95% emittance at Fermilab, and 95% normalized emittance of the

beam going into the Main Ring was about 12 m-mm-mr, so the normalized RMS
emittance would be

€, .
Eaps = — =2 -mm-mrad = 2x 107 m <— We have divided out the “r”

We combine this with the equations (slide 45), beam parameters (slide 47) and lattice
functions (slide 48) to calculate the beam sizes at injection and extraction.

Parameter Symbol Equation Injection Extraction
kinetic energy K [GeV] 8 400
beta-gamma By 9.4736 427.3144

normalized emittance €y [m] 2x10°6

beta at QF B [m] 99.4

beta at QD lein [m] 26.4
X size at QF o, [mm] B o 4.58 68
y size at QF o, [mm] B ;3‘“;“’ 2.36 35

x ang. spread at QF O, 7 E’“ﬁy 46.1x10°¢ 6.9x10¢
y ang. spread at QF Oy ﬁ 89.5x10° 13.3x10°®
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Beam Lines

- In our definition and derivation of the lattice function, a closed path through a
periodic system. This definition doesn’t exist for a beam line, but once we
know the lattice functions at one point, we know how to propagate the lattice
function down the beam line.

M(out, in)
|

ain aout
ﬁin /)J out
J/in J/out

22 (mllm22 +my,My, ) (_ my,m,, ) (_ my,m,, ) a,,

Bou | = (_ 2m,m,, ) (m12 1 ) (m122 ) B

Y out (_ 2my m,, ) (mjl ) (m§2 Vin
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Establishing Initial Conditions

- When extracting beam from a ring, the initial optics of the beam line are set by

the optics at the point of extraction.

\a.

in
B
}/in

>

- For particles from a source, the initial lattice functions can be defined by the
distribution of the particles out of the source

I
\;

in
in

J/in
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Mismatch and Emittance Dilution

- In our previous discussion, we implicitly assumed that the distribution of
particles in phase space followed the ellipse defined by the lattice function

' A

Lattice
' ellipse

...but there’s no guarantee
What happens if this it's not?

"X

Area = e PR Injected

- Once injected, these particles will .7 . ! plartllc le .
follow the path defined by the lattice x}' / distribution
ellipse, effectively increasing the
emittance

P Effective
J/ (increased)
1 e emittance
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Modeling FODO Cells in gdbeamline

- In spite of the name, g4beamline is not really a beam
line tool.
- Does not automatically handle recirculating or periodic systems
- Does not automatically determine reference trajectory
- Does not match or directly calculate Twiss parameters

- Fits particle distributions to determine Twiss parameters and
statistics.

- Nevertheless, it's so easy to use, that we can work
around these shortcomings
- Create a series of FODO cells

- Carefully match our initial particle distributions to the
calculations we just made.
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Creating a Line of FODO Cells

We've calculated everything we need to easily create a string of
FODO cells based on the Main Ring

Won'’t worry about bends
Phase advance per cell = 71°, so need at least at least ~5 cells to see
one betatron period. Let’s do 8.

First, create a quadrupole

# Main Ring FODO cell

param L=29740.

param QL=2133.3

param aperture=50. # Not really important

param -unset gradient=24.479 kill=1 saves time if you make a mistake!

param -unset nCell=8

genericquad MRQuad fieldLength=$QL ironLength=$QL apertureRadius=$aperture ironRadius=5*$aperture kill=1

Doesn't really look like a
real quadrupole, but the
field is right and that’s all
that matters.

18
Create string of FODOs

Create 8 cells by putting 16 of

these, spaced 29740 mm apart,

with alternating gradients (good

practice for doing loops in g4bl).
If we put the first quad at z=0., the beam
will start the middle of it. Is this what we
want? Why or why not?

We create a Gaussian beam based on the

parameters we calculated on Slide 50

beam gaussian sigmaX=.682 sigmaXp=.00000686 sigmaY=.351 sigmaYp=.00001332 \
meanMomentum=$P nEvents=$nEvents particle=proton

We want to track the first hundred particles individually, so we add

‘ trace nTrace=100 oneNTuple=1 primaryOnly=1
We want to fit the distributions at regular intervals to calculate the beam widths and

Twiss parameters. so we add the lines

param totlen=2*$nCell*$L
profile zloop=0:$totlen:100 particle=proton file=main ring profile.txt

Now run 1000 event (need enough for robust fits)
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Analyze Output

- The individual track information is written to the standard root output file in an
Ntuple called “AllTracks”

TFile ft("g4beamline.root");
TNtuple *t = (TNtuple *) ft.FindObjectAny("AllTracks");

- The profile information is written to a text file. This can be read directly into
histoRoot. I've provided a class (G4BLProfile) to load it into root*

G4BLProfile fp(filename);
TNtuple *p = fp.getNtuple();
- We want to create a plotting space on which we can overlay several plots.
The easiest way | know do to this is an empty 2D histogram.

TH2F plot("plot","Track Trajectories",2,0,sMax,2,-xMax,xMax);
plot.SetStats(KFALSE); //turn off annoying stats box
plot.Draw();

- Overlay a 3 sigma “envelope”, based on the fitted profiles

R — “same” option draws over existing plot
p->Draw("3*sigmaX:Z","","same"); «— | P 9P
p->Draw("-3*sigmaX:Z","","Same");

*http://home.fnal.gov/~prebys/misc/NIU_Phys_790/
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Plot Individual Tracks

t->SetMarkerColor(kRed); // These are points, not lines
t->Draw("x:2z","EventID==1","same");

oo

~360° = betatron period

J
!

gl
=

)

N i
TTTTH]
a
=)
£

AN
/

T lIIIIIIIII TTT

ol e b b e b a b L 1w Ix10°
~0 100 150 200 250 300 350 400 450 500
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Envelopes

E. Prebys, Accelerator Fundamentals: Transverse Motion

- If we overlay all 100 tracks (remove “EventID” cut), we see that although
each track has a periodicity of ~5 cells, the envelope has a periodicity of

bbb b Loy Lo Lo b L Lo IX10°

0 50 100

200 250 300 350 400 450 500
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Lattice Functions

- We can plot the fitted lattice functions and compare them to our calculations.

beta.SetStats(kFALSE);

E. Prebys, Accelerator Fundamentals: Transverse Motion

TH2F beta("beta","Horizontal (black) and Vertical Beta Functions",2,0.,sMax,2,0(,120000.);

beta.Draw();
p->Draw("betaX:Z","","same");
p->SetMarkerColor(kRed);
p->Draw("betaY:Z","","same");

beta functions in mm!

Horizontal (black) and Vertical Beta Functions

120710
C slight mismatch beqause of thin lens approximation 0 0
o=, 4 |} PR O . m
oo S | S L N { S [ R A T 100, Jode MAD-X 5.00.00_14/03/14 11,3124
(xR S S I S | S 4 N T L S [ A T R T R 2 .
A A A A A A A AN LA A A A = w\PP
80— | i 1 / \ [l 2 .
Z s
60 70.
60.
40 50.
- 40.
20(—
- 30.
Cov vl b by by b b n v n by s L0 Ix10° 20.
% 50 100 150 200 250 300 350 _ 400 450 500 00 10 20030400,

s(m)
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How Important is Matching?

- In our example, we carefully matched our initial distributions to the calculated
lattice parameters at the center of the magnet. If we start these same
distributions just ~1m upstream, at the entrance to the magnet, things aren’t

SO nice.

\\ / :
/\\//l 100 25

- 406 450 500 0

NP LN IR ATV A AN /AN A
50 100 150 200 250 300 350 50 100 150 200 250 300 350 400 450 500

Individual track trajectories look similar
(of course)

Envelope looks totally crazy
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Mismatching and Lattice Parameters

- If we fit the beta functions of these distributions, we see that the original
periodicity is completely lost now.

Horizontal (black) and Vertical Beta Functions Horizontal (black) and Vertical Beta Functions

Vo
AR
IR

[

10° [ I A I S| IS I I I
0 5 100 150 200 250 300 350 400 450 500

L | Il 1 L I | I |
50 100 150 200 250 300 350 400 450 5

- Therefore, lattice matching is very important when injecting, extracting, or
transitioning between different regions of a beam line!
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