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Electron Machine Basics — Why 7 Q

e me = 0.511MeV /c?; m, = 938MeV /c?; m,/me ~ 1835 !
@ The beginning of the beamline: Eg,, ~ 1MeV
o Electrons are almost immediately relativistic

@ This affects synchrotron radiation:
P ~1/m*

@ Electrons are often considered in linear machines because of
this

o Differences in Radiation protection, beam dumps, etc. — won't
cover



Light Sources — Why ?

@ Synchrotron Radiation discovered
in 1947 at the 70 MeV GE
synchrotron

@ Originally a loss mechanism for
electron synchrotrons (“On the
maximal energy attainable in
betatron”, (1944))

@ Spells the doom for (circular)
electron machines as energy
frontier devices but ...
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Synchrotron Radiation — Basics U]

@ A tough (but straightforward) EM
calculation gives,

dW  V3e? w [
WL
dw  dmegc wWe Sy .
3¢ 3 Am p
We = = = —=
(o} 2,07 )y 7\C 3 73
1.000 1333x18 -
@ Wavelength spectrum peaked near Ac St/ | TN
@ v ~ 500, p ~ 10m, Ac ~ 10 nm! (but e e
broad!) ST SRS S B SR S
@ Enables the tunable production of high - | ! | | | ‘
energy, BRIGHT photon pulses oMol oMl om0 1 x=weg



Brief Outline

@ FEL physics
o Insertion devices
e High Gain FEL
o SASE vs Seeded
@ The Magnetic Chicane
e Bunch compression
@ Electron Injector / Gun

e Photocathode guns
e Focusing Solenoids
e Compression stages
e Emittance oscillation
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The Evolution of Light Sources

@ 1st generation: Parasitic
synchrotron radiation from high
energy physics machines

@ 2nd generation: Dedicated
synchrotron machines for
production of light

@ 3rd generation: Evolved facilities
with insertion devices, many
beamlines

@ 4th generation: Free-electron
Lasers and Electron-recirculating
linacs




The Spectral Brightness Race
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The typical beamlines

mirror

monochromator

o = = E E 9Oace
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The magnetic undulator

Series of alternating magnetic poles

with periodicity \,, K = %’E

K
x(z) =
()=

Lorentz transform to the beam rest
frame: k!, = vk, or X, = X\, /v

This is larmor radiation, and has
wavelength \/,

In the lab frame, this radiation is
blueshifted again by a factor of 2, so
we expect lab radiation

cos k,z

A
Ap ~ —uz Estimate
2y

Au 2 22 .
A\ = 22 (1—|—K /2+~°0 ) Reality



Undulator Radiation ']

The undulator radiation is then simply described as

Ere) = { Boe ™t —Nadu/2e < < Nyhy2c
1 0, otherwise

Frequency response is found via fourier transform (T = N\, /2c)

F(LL)) :/ E(t)elwtdt :/ Eoel(w_wr)tdt

00 -T




Undulator Radiation Cont'd.

F(w) = 2TEgsinc(T(w — wop))
This spectrum has a FWHM Aw = wy /N,

0.4 /

w/wy

L L 1
0.8 1.0 1.2 1.4
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Coherent Radiation

()
—
2 .
incoherent
@ Normally, electron radiation is
incoherent, that is, the phase of
each electron’s emission is random. A

@ Incoherent power P = Ne. Coherent Laser Light

@ If the electron bunch has a size
< Ar, the phases are all roughly W
equal = Coherent emission

o P ~ N2 for Coherent emission
(~ 10°)

Incoherent LED Light



Free-Electron Lasers - Oscillators

“41 o

@ We can achieve coherence through
low-gain operation and a cavity, as mirror
in a traditional laser —

electron dump
@ Can use low energy e beams to el
- . . . gun leraty

make Visible-Microwave radiation B

@ Requires reflective optics at the
wavelengths of interest = no o
X-rays

STI Optronics
Mid-IR Undulator




Free-Electron Lasers - High Gain Devices

m

Another option is to have a very LONG undulator, and allow an
instability to develop:

TIIIINNN]
mssssssns

log(Power)




The LCLS Video

Y VY

http://Icls.slac.stanford.edu/AnimationViewLCLS.aspx

15 of 48



The FEL instability (L]

@ The radiated light becomes intense enough to back-react on
the electron bunch

@ The effect is to bunch the electrons up at the radiation
wavelength

3 [rm]
x [mm]

@ The bunching = more coherent emission = stronger EM field
=> more bunching

[ Video ]



Some FEL Physics

@ The physics of the FEL process is all (basically)
controlled by a single parameter p:

IS 2/3
L (RN
p_2’)/ 27T0b IA

IE
Pgat = P (eb) = p'Dbeam
Au
Lg= 24
477\/§p

o For reference, modern X-ray FELs have p ~ 5 x 1074,
Au ~cm. So Lz ~ few meters.

@ Turns out you need ~ 20L, to saturate = very long
undulators
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More FEL Physics

To maintain spatial coherence, the phase space volume of the
electrons should be less than the phase space volume of the
photons:

€electrons < €photon

Ar

€electrons < 7
47

Converging Diverging

XI

Ar &= Inm = ¢ < 0.1nm! This is very small!
Storage rings have a natural emittance ~nm at best, so cannot be

used for X-ray FELs = linac sources
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Beam requirements for High-Gain XFELs

@ Require very low emittance
(for transverse matching)

@ Require high energy
electrons (for low \,)

@ Require high
peak current [ /14 (

—




SASE Operation Mode

@ Random electron beam
seeds the instability with

noise 0.00 0.05 0.10 0.15 0.20
. . . tps]
@ Locations/size of lasing W5 @ ' o
regions are stochastic =4
c
2
@ Many spectral spikes, £
non-utilization of full 100 foore = —r e

Energy [eV] Energy [eV]

electron beam

@ Spatially but not temporally
coherent radiation

Coherence time [fs]

0



Coherence Length ]

()] L
The reason for the many spikes is that information is generally not

propagated through the whole electron beam

Au
=52
This is also a resonance condition:

A

(1+K?/2)

. trajectory of electron

E-component

optical field . !
Ty |
byt
A+A A A K
2= e A= 14—
¢ v A



Coherence Length 2 Q

QLAY
The light slips forward by one radiation wavelength per undulator

period
Coherence Length: Slippage in one gain length

L.~ >\r/77p < heam

ol

So the individual SASE spikes never have time to fully
communicate



Seeding - ldeas

Y VY

If we could introduce a coherent seed to the process, all areas of
the beam would (ideally) radiate identically — Pure spectrum

T AM

— -

Electron beam

| HMJL
T

Mg

Seed Electron beam

But how can we do this without the required lasers?
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HGHG — Harmonic Upconversion '.n
(ol] L
Use a conventional laser to create high harmonic density bunching
(to seed the coherent emission)

electron beam dipole hi )
modulator ~ C¢hicane radiator

magnet
v I 88, mm
(111 (11

longitudinal phase space
laser beamA A .

A . -y .
> v >

current profile




Interim - The Magnetic Chicane '.n
(o] |
@ We've focused on transverse dynamics so far, but the need for
peak current (and seeding) forces us to look in the
longitudinal plane

@ To compress, we need to be able to move particles
longitudinally (Rs; transport components)

Consider a simple dipole magnet, bending in a radius p through an
angle 6 for the reference particle with momentum p.




Interim - The Magnetic Chicane

The result is that

ds/(p/p) = po (0 —sin0) — ?20

@ More energetic electrons travel a longer distance

o For relativistic particles v > 1, they arrive /ater than their low

energy counterpart = prism!

Magnetic dipoles are longitudinally (as well as transversely)

dispersing optics
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Interim - The Magnetic Chicane “
()] L
Put 4 dipoles, to have the trajectory return to the straight path to
form a chicane:

: erg Ld.u.'r
AL/E < > —
— —
N f
a
Al

Higher energy particles travel a shorter distance = dispersing in
longitudinal space:

2

ds/(5p/p) = 26°(Laits + 3

Linag)

Note: Can use 2 dipoles if you desire a beamline shift ( but
horizontally dispersing)



Interim - The Magnetic Chicane

JLab Magnetic Chicane
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Off-Crest Acceleration & Chirp

@ Enter accelerating cavity off-crest to
provide an energy-time(distance)
correlation

V(z) = Vosin(koz) °

Where kg = 27/ ARy is the RF
wavevector, so (assuming the bunch is

ultra-relativistic and does not slip with
respect to the RF wave)

E(Z) =Ey+ eV sin(koz + QO)

dE
it eVoko cos(koz + @) ~ eVoko cos(p)
z
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Bunch Compression
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Non-linear complications U
ALt ]}

@ For a bunch with comparable length to RF, the beam acquires
quadratic curvature:

Var TN O Ve TN G
L7 N = | S \\\ ~
wi | \ sl

@ '‘Banana shape' limits compression

@ Can use a harmonic cavity to correct the quadratic curvature
term

@ An infinite harmonic series = a perfectly linear beam over
ALL scales



Electron Injectors

Electron Injectors

* Many slides taken/adapted from USPAS 2016 Course “Electron

Injectors for 4th Generation Light Sources” F. Sannibale, D.
Filipetto, C. Mitchell
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Electron Injector UQ
QLAY
@ The electron injector is where the electrons are born and enter
the accelerator environment
@ Accelerator complex divided between ‘injector’ and
'accelerator’
o Generally ‘injector’ ends when space charge forces are negligible
o Space charge are beam self-forces, ~ 1/+2

@ Space charge forces are in general non-linear, and can increase
the rms emittance of the beam
@ So the injector performance defines a limit for beam emittance

N
B=——"-——— 6-D Beam Brightness

EN xEN,yEN,z

W t=t,>>1
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Electron Injector Subsystems

Elect “Bucking” .
Gunmn U&:;‘G Solenmdn Accelerating Matching

Sectlonu Secﬂon

|.|I|l+|— +—I+—||||

Belm | Steering Coils
(a.

Buncher k.a. as correctors)

Cathads (some schemes Diagnoslics
System does not have one)

Cathode system

Gun

Focusing Solenoids
Buncher
Accelerating systems
Matching



Thermionic Cathodes

Y VY

Hot filament simply emits electrons when heated

Energy of electrons depends on temperature

Electron distribution depends critically on cathode geometry
CONTINUOUS (every RF Bucket) OPERATION
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Photocathode ']

@ Photocathodes: Laser impinges on  |igent photons

material, photoelectric effect Ejected
liberates electrons / electrons

E=h—¢

Matenal

@ Work function ¢, and QE depend
critically on material

@ Requires laser system, usually in
the UV (266nm)

e Fairly tunable via laser spot size,
pulse duration. Prompt response.

e usually PULSED OPERATION




Photocathode Emittance ']

Excess energy from the photons leads to increased electron
(transverse!) velocity = increased emittance

€ \/hw -9+ Eschottky

Photon Wavelength (nm)
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Electron Injectors & FELs — USPAS 37 of 48



Extractable Charge

@ FELs sensitive to peak current AND total beam
power = want a lot of charge, and high peak
current

@ Operational optimum usually found ~100s of
pC/bunch

@ Note: Can trade lower peak power for shorter
gain length (generally)

@ Space charge field defines maximum charge
density extractable (Higher acc. field helps!)

Cathode
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Digression - Slice Vs. Projected Quantities ']

The FEL physics p is generally sensitive only to the parameters in a
local region ‘slice’ of the electron beam

Longitudinal Disteibution F— Sion nerey Sprend

8
3

: —+
L _

cuTent 4
20 40 80

Length of slice is ~ slippage length over the undulator ~ N\,
So we generally only require a portion of the electron beam to have
good parameters out of the injector



Y VY

Digression - Emittance Spoiling

“41 o
@ Can use this slice v. projected to
lase on select portions of the beam

a)

>

@ Dispersive chicane + slotted foil "
picks out a temporal portion of the
beam to preserve emittance

@ Elaborate foils can be used to fully b)

tune multiple pulses w/ durations

and separations e

coulomb
scattered

> unspoiled e

coulomb
scattered

-1000 50 50 100

0
1(fs)
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High Gradient RF Gun

“41
@ Electrons emitted, need to capture "j‘;
them and accelerate quickly = £
high gradient RF fields 2
5
@ At this point, electrons are very - P R
non-relativistic, so they slip relative = o dperure
to the RF wave by a lot Z — solenoid field
0‘.3 04 05

@ Need to adjust phase of RF for
maximum acceleration gradient =
ride the wave

Arr ~ mm = Ey ~ 50MV/m !l
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Normal Conducting High Frequency RF Guns

Pros:
» High gradients from ~50 to ~140 MV/m
(20 — 60 MV/m at cathode during photo-emission

» “Mature” technology.

* Full compatibility with magnetic fields.

» Compatible with most photocathodes

» Proved high-brightness performance.
(LCLS, PITZ, ...)

main solenold

Areas for improvement: (1/:5 GHz (L-band)

« High power density on the RF structure (~ 100 W/cm?) limits the
achievable repetition rate at high gradient to ~ 10 kHz.

* Relatively small pumping apertures can limit the vacuum performance.



Superconducting RF Guns

Pros:

« Potential for relatively high
gradients (several tens of MV/m)

* CW operation
« Excellent vacuum performance.

« Promising results by several groups
(Rossendorf, Wisconsin, HZB, BNL, ...)

gun half-cell
He-vessel

Areas for improvement: power coupler ELBE SRF Gun

» Move technology into a more mature phase. Significant progresses under
way.
» Experimentally verify cathode/SRF compatibility issues

(Promising results with Cs,Te at Rossendorf, DC-SRF Peking approach).
Develop higher QE super-conducting cathodes.

« Difficult emittance compensation (Meissner field exclusion, magnetic
field induced quenching, ...).
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DC Guns “

Pros:
» DC operation
+ DC guns reliably operate at 350~380 kV (JLAB, Cornell), ongoing effort to
increase the final energy (Cornell, Daresbury, Jlab, JAEA, KEK,...).
« Simulations and recent results (Cornell) demonstrated the capability of sub-
micron emittances at ~ 0.3 nC, with ~380 keV beam energies.

¢ Full compatibility with magnetic fields. -
* Excellent vacuum performance

» Compatible with most photo-cathodes. :]
(The only one operating GaAs cathodes)

' JLab

New design

Areas for improvements: |
« Higher energies require further R&D and S|gn|f|cant
technology improvement.

« In particular, improvement of the high voltage breakdown Cathode
ceramic design and fabrication. Anods

* Relative low gradients at the cathode <~ 10 MV/m GCornell 400 keV Gun

* Developing and test new gun geometries (inverted geometry, SLAC, JLab)
Very interesting results from a “pulsed” DC gun at Spring-8.



The Solenoid Magnet U]

Qi
@ Solenoids are capable of focusing in
both planes
solenoid windings in
2 soft Ironc_aslnq aeticdd
r N magnetic field lines

— 1! e 4 . _Mpolethisend
B.(r,2) = B.(2) - - B(2) T
Pl ,

B _ _£Bl EBIII
r(r7 Z) - 2 (Z) + 16 z (Z)

—5B'(z) induces a rotive velocity,

which in turn focuses the beam in
r = both x and y!

Electromagnetic lens - cross section through

@ Useful for focusing and controlling Folencid -cument coming out of page attop
the beam quickly in the low energy
region



Velocity Bunching

Low energy electrons streaked with a zero-phased RF cavity

Before entering cavity Right after cavity Downstream cavity
AE
-
z
i
[ o, > «<—0,—>
Drift Drift

Rf-cavity operated at
“zero-crossing”

Recall in a drift [
ds/(dp/p) = 2

Effective compression at low energy!



Relativistic Space Charge & Emittance Oscillation ]

Space charge electric field components £, and E, for a finite, uniform cylindrical bunch:

- Space charge field at 0.5 My Space charge field in the injector SMev
18

02l Y=2 — eml] 16 y=11
0 A= 1 A=0.1

more uniform
at high energy

E,.Ef

E, . E (R) [MViin]
o
- R £
T
I
I
k
|
£ ER) Mvim]
. L
28 .32

I

I bunch 04
005 ; h

[ | shape 02
<01 0
02 .
M3 =2 2 3 4 5 4 3 2 4 0 1 2 3 4 3
2 ] 2 ]

L(t)

effect of space

charge fields on R(t)

the bunch over a |||]|:: >
time At

How will this affect the emittance of the beam?
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Emittance Oscillation & Compensation

@ The different longitudinal positions
of the beam trace out different X
ellipses

@ The projected result looks like an
RMS emittance increase

@ Focus and align them all, THEN
‘freeze in' emittance via
accelerating section

8 —

sigra_x_fmrm]
enx_{um]
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