Floquet Coordinates, Resonance, and Couplings ### Non-linear Perturbations > In our earlier lectures, we found the general equations of motion $$x'' = -\frac{B_y}{(B\rho)} \left(1 + \frac{x}{\rho} \right)^2 + \frac{\rho + x}{\rho^2}$$ $$y'' = \frac{B_x}{(B\rho)} \left(1 + \frac{x}{\rho} \right)^2$$ - > We initially considered only the linear fields, but now we will bundle all additional terms into ΔB - non-linear plus linear field errors - > We see that if we keep the lowest order term in ΔB , we have $$x'' + K(s)x = -\frac{1}{(B\rho)} \Delta B_y(x, s)$$ $$y'' + K(s)y = \frac{1}{(B\rho)} \Delta B_x(y, s)$$ $$B_{y} = B_{0} + B'x + \Delta B_{y}(x, s)$$ $$B_{x} = B'y + \Delta B_{x}(y, s)$$ This part gave us the Hill's equation ### Floquet Transformation - Evaluating these perturbed equations can be very complicated, so we will seek a transformation which will simplify things - Our general equation of Motion is $$x(s) = A\sqrt{\beta(s)}\cos(\psi(s) + \delta)$$ This looks quite a bit like a harmonic oscillator, so not surprisingly there is a transformation which looks exactly like harmonic oscillations $$\xi(s) = \frac{x}{\sqrt{\beta}}$$ $$\phi = \frac{\psi}{v} = \frac{1}{v} \int \frac{1}{\beta} ds \Rightarrow \frac{d\phi}{ds} = \frac{1}{v\beta}$$ After a couple pages of messy math, we find that the general equation of motion is Harmonic Oscillator $$\ddot{\xi} + v^2 \xi = -v^2 \beta^{3/2} \frac{\Delta B}{\left(B\rho\right)}$$ Term ### Understanding Floquet Coordinates In the absence of nonlinear terms, our equation of motion is simply that of a harmonic oscillator $$\ddot{\xi}(\phi) + v^2 \xi(\phi) = 0$$ and we write down the solution $$\xi(\phi) = a\cos(v\phi + \delta)$$ $$\dot{\xi}(\phi) = -a v \sin(v\phi + \delta)$$ - > Thus, motion is a circle in the $\left(\xi,\frac{\dot{\xi}}{\nu}\right)$ plane - Using our standard formalism, we can express this as $$\frac{\xi(\varphi) = \xi_0 \cos(\nu\varphi) + \frac{\dot{\xi}_0}{\nu} \sin(\nu\varphi)}{\dot{\xi}(\varphi) + \dot{\xi}_0 \cos(\nu\varphi)} \Rightarrow \begin{pmatrix} \xi(\varphi) \\ \dot{\xi}(\varphi) \end{pmatrix} = \begin{pmatrix} \cos(\nu\varphi) & \tilde{\beta} \sin(\nu\varphi) \\ -\frac{1}{\tilde{\beta}} \sin(\nu\varphi) & \cos(\nu\varphi) \end{pmatrix} \begin{pmatrix} \xi_0 \\ \dot{\xi}_0 \end{pmatrix}; \text{ where } \tilde{\beta} = \frac{1}{\nu}$$ - > A common mistake is to view ϕ as the phase angle of the oscillation. - $\blacklozenge\ v\phi$ the phase angle of the oscillation - \bullet ϕ advances by 2π in one revolution, so it's *related* (but NOT equal to!) the angle around the ring. Note: $$x_{\text{max}}^2 = \beta \varepsilon = \beta \xi_{\text{max}}^2 = \beta a^2 \Rightarrow a^2 = \epsilon$$ unnormalized! $\nu\phi + \delta$ ### Perturbations > In general, resonant growth will occur if the perturbation has a component at the same frequency as the unperturbed oscillation; that is if $$\Delta B(\xi, \phi) = ae^{i\nu\phi} + (...) \Rightarrow \text{resonance!}$$ We will expand our magnetic errors at one point in ϕ as $$\Delta B(x) \equiv b_0 + b_1 x + b_2 x^2 + b_3 x^3 \dots; b_n \equiv \frac{1}{n!} \frac{\partial^n B}{\partial x^n} \bigg|_{x=y=0}$$ $$x = \sqrt{\beta}\xi \qquad -\frac{v^2 \beta^{3/2} \Delta B}{(B\rho)} = -\frac{v^2}{(B\rho)} (\beta^{3/2} b_0 + \beta^{4/2} b_1 \xi + \beta^{5/2} b_2 \xi^2 + ...)$$ $$\ddot{\xi} + v^2 \xi = -\frac{v^2}{(B\rho)} \sum_{n=0}^{\infty} \beta^{(n+3)/2} b_n \xi^n$$ - \triangleright But in general, b_n is a function of φ , as is β , so we bundle all the dependence into harmonics of ϕ $\frac{1}{(B\rho)}\beta^{(n+3)/2}b_n = \sum_{m=-\infty}^{\infty} C_{m,n}e^{im\phi}$ - So the equation associated with the nth driving term becomes $$\ddot{\xi} + v^2 \xi = -v^2 \sum_{k=-\infty}^{\infty} C_{m,n} \xi^n e^{im\phi}$$ Remember! $\xi, \beta, \text{ and } b_n \text{ are all functions of (only)}$ Remember! functions of (only) φ $$b_n = b_n(s)$$ $$= b_n(\phi)$$ ## Calculating Driving Terms $$\int_{0}^{2\pi} e^{in\phi} e^{-im\phi} d\phi = 2\pi \delta_{m,n}$$ > We can Fourier transform to calculate the $C_{m,n}$ coefficients based on the measured fields $$C_{m,n} = \frac{1}{(B\rho)} \frac{1}{2\pi} \int_{0}^{2\pi} \beta^{(n+3)/2} b_n e^{-im\phi} d\phi$$ But we generally know things as functions of s, so we use $d\phi = \frac{1}{v}d\psi = \frac{1}{v}\frac{d\psi}{ds}ds = \frac{1}{v\beta}ds$ to get $$C_{m,n} = \frac{1}{(B\rho)} \frac{1}{2\pi v} \oint \beta^{(n+1)/2}(s) b_n(s) e^{-im\phi} ds$$ Where (for a change) we have explicitly shown the s dependent terms. We're going to assume small perturbations, so we can approximate β with the solution to the homogeneous equation $\frac{\infty}{1000}$ $$\ddot{\xi} + v^2 \xi = -v^2 \sum_{k=-\infty}^{\infty} C_{m,n} \xi^n e^{im\phi}$$ $\xi(\varphi) \approx a \cos(\nu \varphi)$; (define starting point so $\delta = 0$) $$\xi^{n} = a^{n} \cos^{n} (v\varphi) = \operatorname{Re} \left[a^{n} \frac{1}{2^{n}} \sum_{\substack{k=-n \\ \Delta k=2}}^{n} \begin{pmatrix} n \\ \frac{n-k}{2} \end{pmatrix} e^{ivk\varphi} \right]; \text{ where } \begin{pmatrix} i \\ j \end{pmatrix} \equiv \frac{i!}{j!(i-j)!}$$ Example $$\cos^3\theta = \frac{1}{2^3} \left(\begin{pmatrix} 3 \\ 3 \end{pmatrix} \cos(-3\theta) + \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cos(-\theta) + \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cos(\theta) + \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cos(3\theta) \right) = \frac{3}{4} \cos 3\theta + \frac{1}{4} \cos \theta$$ Plugging this in, we can write the nth driving term as $$-v^{2}\left(\frac{a}{2}\right)^{n}\sum_{\substack{k=-n\\ k=2}}^{n}\left(\frac{n}{2}-k\right)\sum_{m=-\infty}^{\infty}C_{m,n}e^{i(m+vk)\phi} \qquad \qquad \left(\begin{array}{c} i\\ j \end{array}\right) \equiv \frac{i!}{j!(i-j)!}$$ > We see that a resonance will occur whenever $$m + vk = \pm v$$ $-\infty < m < \infty$ $v(1 \mp k) = \pm m$ where $-n \le k \le n$ $(\Delta k = 2)$ Since m and k can have either sign, we can cover all possible combinations by writing $$v_{\text{resonant}} = \frac{m}{1 - k}$$ - Reminder - n= power of multipole expansion (quad=1, sextupole=2, octupole=2, etc) - m= Fourier component of anomalous magnetic component when integrated around the ring. ## Types of Resonances | Magnet Type | n | k | Order
 1-k | Resonant tunes
v=m/(1-k) | Fractional Tune at
Instability | |-------------|---|----|---------------|-----------------------------|-----------------------------------| | Dipole | 0 | 0 | 1 | m | 0,1 | | Quadrupole | 1 | 1 | 0 | none (tune shift) | - | | | 1 | -1 | 2 | m/2 | 0,1/2,1 | | Sextupole | 2 | 2 | 1 | m | 0,1 | | | 2 | 0 | 1 | m | 0,1 | | | 2 | -2 | 3 | m/3 | 0,1/3,2/3,1 | | Octupole | 3 | 3 | 2 | m/2 | 0,1/2,1 | | | 3 | 1 | 0 | None | - | | | 3 | -1 | 2 | m/2 | 0,1/2,1 | | | 3 | -3 | 4 | m/4 | 0,1/4,1/2,3/4,1 | ### Example: Sextupole (Third Order Resonance) - > The third order resonance will occur at tunes near m/3. - > The strength of the resonance will be given by Sextupole term $$A_{m,2} = \oint \beta^{3/2} \frac{B''}{2(B\rho)} \cos(3\psi) ds$$ Convert back to ordinary phase angle $$B_{m,2} = \oint \beta^{3/2} \frac{B''}{2(B\rho)} \sin(3\psi) ds$$ It will perturb the stable region of phase space into a triangle Relative size of Terms determine Orientation in phase space ## Strength of Resonance The size of the stable region in phase space with shrink with increased driving strength or by moving the tune closer to m/3. $$\delta v = v - \frac{m}{3}$$ $$A_{m,2} = \oint \beta^{3/2} \frac{B''}{2(B\rho)} \cos(3\psi) ds \quad [L]^{-1/2}$$ $$B_{m,2} = \oint \beta^{3/2} \frac{B''}{2(B\rho)} \sin(3\psi) ds \quad [L]^{-1/2}$$ $$\varepsilon_{\text{max}} = \frac{64\pi^2 \delta v^2}{3(A_{m,2}^2 + B_{m,2}^2)}$$ $$\delta v = \frac{\sqrt{3\varepsilon \left(A_{m,2}^2 + B_{m,2}^2\right)}}{8\pi}$$ ### Use of Driving Terms - We see that in general, magnetic imperfections drive specific resonances based on the harmonic content of individual multipole moments. - This means that unwanted resonances can be canceled out by installing multipoles to drive that specific harmonic term. - Example: Booster harmonic corrector page resonances near Control magnitude and phase (A vs B terms) ### Application of Resonance If we increase the driving term (or move the tune closer to m/3), then the area of the triangle will shrink, and particles which were inside the separatrix will now find themselves outside These will stream out along the asymptotes at the corners. These particles can be intercepted by an extraction channel - → Slow extraction (ms to many seconds) - Very common technique ### Example: Mu2e Experiment 8 GeV Extraction ### > Use sextupoles to drive 3rd integer resonance Moving tune closer to m/3 will reduce stable phase space, causing beam to be removed at a steady rate Electrostatic septum at 80 kV/1cm deflects beam into a downstream Lambertson magnet ## Simulation of Third Integer Extraction* *M. Syphers ## Coupled Harmonic Oscillators ### Equations of motion $$m\ddot{x} + k_1 x + \kappa (x - y) = 0$$ $$m\ddot{x} + (k_1 + \kappa)x - \kappa y = 0$$ $$m\ddot{y} + (k_2 + \kappa)y - \kappa x = 0$$ Try a solution of he form: $$x = ae^{i\omega t} \implies \ddot{x} = -\omega^2 ae^{i\omega t}$$ $$y = be^{i\omega t} \implies \ddot{y} = -\omega^2 be^{i\omega t}$$ Multiply the top by the bottom: $$(\omega_1^2 - \omega^2)(\omega_2^2 - \omega^2) = q^2$$ $$\omega^{4} - (\omega_{1}^{2} + \omega_{2}^{2})\omega^{2} + (\omega_{1}^{2}\omega_{2}^{2} - q^{4}) = 0$$ $$=\frac{\left(\omega_{1}^{2}+\omega_{2}^{2}\right)\pm\sqrt{\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2}+4q^{4}}}{2}$$ ### Weak Coupling ### Degenerate Case: $$\omega_1 = \omega_2 \equiv \omega_0$$ $$\omega^2 = \omega_0^2 \pm q^2 = \frac{k_0}{m} \pm \frac{\kappa}{m}$$ Resonance splitting ### Formalism ### General coupled equation #### General solution $$\begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} + \mathbf{M} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \qquad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} e^{i\omega t} \rightarrow \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} = -\omega^2 \begin{pmatrix} a \\ b \end{pmatrix}$$ \triangleright i.e. ω^2 are the eigenvalues of **M** and (a,b) are the linear combinations of x and y which undergo simple harmonic motion. ## Application to Accelerators ### Introduce skew-quadrupole term $$\frac{\partial B_x}{\partial x} = -\frac{\partial B_y}{\partial y} \neq 0$$ $$x' \propto -\frac{\partial B_y}{\partial x} x - \frac{\partial B_y}{\partial y} y$$ $$y' \propto \frac{\partial B_x}{\partial y} y + \frac{\partial B_x}{\partial x} x$$ Planes coupled x and y motion *not* independent #### **General Transfer Matrix** $$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} = M \begin{pmatrix} x_0 \\ x'_0 \\ y_0 \\ y'_0 \end{pmatrix}$$ #### Normal Quad $$\frac{1}{f} \equiv q = \frac{B'l}{(B\rho)}$$ $$\mathbf{M}_{\mathbf{Q}} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -q & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & q & 1 \end{array} \right)$$ #### Skew quad $$B_x = \tilde{B}'x \to \Delta y' = \frac{\tilde{B}'l}{(B\rho)}x \equiv \tilde{q}x$$ $$B_{y} = -\tilde{B}'y \rightarrow \Delta x' = \frac{\tilde{B}'l}{(B\rho)}y \equiv \tilde{q}y$$ So the transfer matrix for a skew quad would be: $$\mathbf{M}_{\tilde{\mathbf{Q}}} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & \tilde{q} & 0 \\ 0 & 0 & 1 & 0 \\ \tilde{q} & 0 & 0 & 1 \end{array} \right)$$ For a normal quad rotated by ϕ it would be $$\mathbf{M}_{\mathbf{Q}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -q\cos 2\phi & 1 & -q\sin 2\phi & 0 \\ 0 & 0 & 1 & 0 \\ -q\sin 2\phi & 0 & q\cos 2\phi & 1 \end{pmatrix}$$ ## Coupling in Floquet Coordinates $$\Delta x' = \tilde{q}y$$ $$\Delta x = 0 = \sqrt{\beta_x} \Delta \xi_x$$ ### In Floquet Coordinates $$x' = \frac{1}{\sqrt{\beta_x} v_x} (\dot{\xi}_x - \alpha_x v_x \xi_x)$$ $$\Delta \dot{\xi}_x = v_x \kappa \xi_y$$ $$\Delta x' = \frac{\Delta \dot{\xi}_x}{\sqrt{\beta_x} v_x} = \tilde{q}y = \tilde{q}\sqrt{\beta_y} \xi_y$$ $$\Delta \dot{\xi}_y = v_y \kappa \xi_x$$ where $$\kappa \equiv \tilde{q} \sqrt{\beta_x \beta_y}$$ Dimensionless coupling ### Coupled Tunes $$\overline{\mathbf{v}} \equiv \frac{\left(\mathbf{v}_x + \mathbf{v}_y\right)}{2}$$ $$\delta v = v_{v} - v_{x}$$ $$v_{\pm} = \overline{v} \pm \frac{\delta v}{2} \sqrt{1 + \frac{\kappa^2 v^2}{4\pi^2 \delta v^2}}$$ $$= \overline{v} \pm \frac{1}{4\pi} \sqrt{4\pi^2 \delta v^2 + \kappa^2}$$ If there's coupling, then there will always be a tune split $$v_x = v_y = v$$ $$\rightarrow \delta v = 0$$ $$\Delta v_{min} = v_{+} - v_{-}$$ $$= \frac{\kappa}{2\pi} = \frac{\sqrt{\beta_{x}\beta_{y}}}{2\pi} \tilde{q}$$ $$\kappa \equiv \tilde{q} \sqrt{\beta_x \beta_y}$$ If there's no coupling, then $$v_{\pm} = \overline{v} \pm \frac{\delta v}{2}$$ $$= v_{x,y}$$ ## Example: Tune Coupling in LHC ## Example: NSLS-II 3 GeV Electron Ring (BNL) > Minimum tune separation before and after correction. ## Example Problem (from 2012 final) > A 10 GeV proton synchrotron is found to have a minimum tune separation of .02. If this is due to coupling, determine the dimensionless coupling strength κ $$\Delta v_{min} = \frac{\kappa}{2\pi}$$ $$\kappa = (2\pi)\Delta v_{min}$$ $$= (2\pi)(.02)$$ $$= .126$$ ➤ If a skew quadrupole is located at a location where bx=50m and by=20, what integrated skew quadrupole field would be required to generate this tune splitting? $$\kappa = \sqrt{\beta_x \beta_y} \tilde{q}; \quad \tilde{q} = \frac{\tilde{B}'L}{(B\rho)}$$ $$\tilde{B}'L = \frac{(B\rho)\kappa}{\sqrt{\beta_x \beta_y}} = \frac{(36.3)(.126)}{\sqrt{(20)(50)}} = .144 \text{ T}$$ ## (cont'd) By what angle would a 1 m long 1 T/m normal quad have to be rotated to produce this coupling? $$\tilde{q} = q \sin 2\phi$$ $$\phi = \frac{1}{2} \sin^{-1} \left(\frac{\tilde{B}'l}{B'l} \right)$$ $$= \frac{1}{2} \sin^{-1} \left(\frac{(.144)}{(1)(1)} \right)$$ $$= .072$$ $$= 4.1^{\circ}$$ ## Coupling and Resonances Although we won't derive it in detail, it's clear that if motion is coupled, we can analyze the system in terms of the normal coordinates, and repeat the analysis in the last chapter. In this case, the normal tunes will be linear combinations of the tunes in the two planes, and so the general condition for resonance becomes. $k_x v_x \pm k_y v_y = m$ $(k_x, k_y, m \text{ all integers})$ This appears as a set of crossing lines in the nx,ny "tune space". The width of individual lines depends on the details of the machine, and one tries to pick a "working point" to avoid the strongest resonances.