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So far, we have not considered the effect that particles in a bunch might have 
on each other, or on particles in another bunch. 
 
Consider the effect off space charge on the transverse distribution of the 
beam. 

E
B
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2πσ 2 e

−r2 /2σ 2

radial charge 
density 

If we look at the field at a radius r, we have 
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Similarly, Ampere’s Law gives 
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Linear charge density 
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We can break this into components in x and y 
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Non-linear and coupled è ouch! but for x<<σx 
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′′x = Fx
vp

= Fx
β 2γ mc2

≈ e2

4πσ 20β
2γ 3 nx

= r0
β 2γ 3σ 2 nx;     r0 ≡

e2

4π0m0c
2

“classical radius” = 1.53×10−18  m for protons

This looks like a distributed defocusing quad of strength d 1
f

⎛
⎝⎜

⎞
⎠⎟

ds
≡ k = − nr0

β 2γ 3σ 2

so the total tuneshift is 

  

Δν x =
1

4π
kβx s( )ds!∫

= −
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4πβ 2γ 3 n
βx s( )
σ x

2 ds!∫

= −
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4πβ 2γ 3
NB
εx

;    B≡
npeak
n
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4πβγ 2L
L
βγεx( )

= −
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4πβγ 2εx,N

 = x,N

 
= 1
x

Maximum tuneshift for particles 
near core of beam 

“Bunching factor” 
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K = 400 MeV
N=5 ×1012

N = 2 π -mm-mr
B=1 (unbunched beam)

Δν = − Nr0
4πβγ 2N

= −.247 This is pretty large, but because this is a rapid 
cycling machine, it is less sensitive to resonances 

Because this affects individual particles, it’s referred to as an 
“incoherent tune shift”, which results in a tune spread.  There is also a 
“coherent tune shift”, caused by images charges in the walls of the 
beam pipe and/or magnets, which affects the entire bunch more or less 
equally.   
 
This is an important effect, but beyond the scope of this lecture. 



Ø  In general, space charge tuneshifts limit the total beam that can be 
injected into a machine.  The tuneshift is 
 
 
 
and we would like to keep the magnitude below about .2 

Ø  One technique is to “paint” the beam to fill the aperture and 
reduce the normalized emittance 
u  Example:  The J-PARC in Japan injects 400 MeV beam into their Rapid Cycling 

Synchrotron and “paints” it to uniformly populate 100 π-mm-mrad 
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Δν = −

NBr0
4πβγ 2εx,N



Ø  Including different distributions: 

 

Ø  So the maximum injected charge grows  
rapidly with increasing energy 
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Δν ≈

Nr0
2πεNβγ

2 FB! .2

total protons 

normalized emittance 

“Bunch factor” = Ipeak/Iave 
(Reduce with higher RF harmonics) 

= . 5 for Gaussian emittance 
    3 for 95% Gaussian emittance 
    1 for 100% uniform (painted) emittance 

Nmax ∝βγ 2 without painting

∝β 2γ 3 painted to fill physical aperture

 εN = εβγ = constant

doesn’t include improvement of going to 
uniform distribution with painting 
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If two oppositely charged bunches pass through each other… 

E
B

E
B

v v
Both E and B fields are attractive to 
the particles in the other bunch 

If two bunches with the same sign pass through each other… 

E
B

v

E
B

v
Both E and B fields are repulsive to the 
particles in the other bunch 

In either case, the forces add 
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
F = −r̂ e2

2π0r
N
L
1− e−r

2 /2σ 2( ) 1+ β 2( )

≈ −r̂ e2

π0r
N
L
1− e−r

2 /2σ 2( )

≈ 2

′′x = Fx
vp

;   ′′y =
Fy
vp

Integrate… 

Δ ′x = Fx
vp

Δs;       Δ ′y =
Fy
vp

Δs

Effective Length 
L L

v

v v

L
2

v

Front of first bunch encounters 
front of second bunch 

Front of first bunch exits second bunch. 

“Effective length” 
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Δ ′x = Fx
vp

Δs = Fx
vp

L
2
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γ

x
x2 + y2( ) 1− e

−
x2+y2( )
2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
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≈ − Nbr0
γσ 2 x = − 1

feff
x

Δ ′y ≈ − Nbr0
γσ 2 y = − 1

feff
y

Δν = Nbr0β
*

feff
= Nbr0
4π

β *

γσ 2

= Nbr0
4πN

≡ ξ

β ≈1

Small x and y 

Maximum tuneshift for particles near 
center of bunch 

“Tuneshift Parameter” 

normalized emittance 
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The total tuneshift will ultimately limit the performance of any collider, by driving the 
beam onto an unstable resonance.  Values of on the order ~.02 are typically the limit.  
However, we have seen the somewhat surprising result that the tuneshift 
 
 
 
does not depend on β*, but only on 
 
 
 
For a collider, we have 
 
 
 
 
 
 
We assume we will run the collider at the “tuneshift limit”, in which case we can 
increase luminosity by 

•  Making β* as small as possible 
•  Increasing Nb and ε proportionally. 

 
ξ = Nbr0

2πγ

 

Nb


≡    "brightness"

 

L = fnbNb
2

4πσ 2 = fnbNb
2

4π β *N
γ

⎛
⎝⎜

⎞
⎠⎟

= fnbNbγ
r0β

*
r0
4π

Nb

N

⎛
⎝⎜

⎞
⎠⎟

= f nbNbγ
r0β

* ξ


