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Ø  We will tackle accelerator physics the way we tackle 
most problems in classical physics – ie, with 18th and 19th 
century mathematics! 
u Calculate ideal equilibrium trajectory 
u Use linear approximations for deviations from this trajectory 
u Solve for motion 
u Treat everything else as a perturbation to this 

Ø  As we discussed in our last lecture, the linear term in 
the expansion of the magnetic field is associated with 
the quadrupole, so let’s start there… 
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Ø  A positive particle coming out of the page off center in the 
horizontal plane will experience a restoring kick 
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èpairs give net focusing in both planes -> “FODO cell” 
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Defocusing! 

Luckily, if we place equal and opposite pairs of lenses, there 
will be a net focusing regardless of the order. 
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Ø  The simplest magnetic lattice consists of quadrupoles and the spaces 
in between them (drifts). We can express each of these as a linear 
operation in phase space. 

Ø  By combining these elements, we can represent an arbitrarily 
complex ring or line as the product of matrices. 
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Ø  At the heart of every beam line or ring is the “FODO” cell, consisting 
of a focusing and a defocusing element, separated by drifts: 

 
Ø  The transfer matrix is then 
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Ø  It might seem like we would start by looking at beam lines and them move 
on to rings, but it turns out that there is no unique treatment of a 
standalone beam line 
u  Depends implicitly in input beam parameters 

Ø  Therefore, we will initially solve for stable motion in a ring. 

Ø  Rings are generally periodic, made up of more or less identical cells 
u  In addition to simplifying the design, we’ll see that periodicity is important to 

stability 

Ø  The simplest rings are made of dipoles and FODO cells 
u  Or “combined function magnets” which couple the two 
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Periodic 
“cell” 

�  Our goal is to de-couple the problem into 
two parts 

§  The “lattice”: a mathematical 
description of the machine itself, 
based only on the magnetic fields, 
which is identical for each identical 
cell 

§  A mathematical description for the 
ensemble of particles circulating in 
the machine (“emittance”); 

N
cellcellcellcellring MMMMM == !



Ø  In the absence of degeneracy, an nxn matrix will have n 
“eigenvectors”, defined by: 

Ø  Eigenvectors form an orthogonal basis 
u  That is, any vector can be represented as a unique sum of eigenvectors 

Ø  In general, there exists a unitary transformation, such that 

 

Ø  Because both the trace and the determinant of a matrix are 
invariant under a unitary transformation: 
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Tr M( ) = M11 +M 22 ++Mnn = λ1 + λ2 ++ λn
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Ø  We can represent an arbitrarily complex ring as a combination of 
individual matrices 

 
 
Ø  We can express an arbitrary initial state as the sum of the 

eigenvectors of this matrix 

Ø  After n turns, we have 

Ø  Because the individual matrices have unit determinants, the 
product must as well, so 
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Ø  We can therefore express the eigenvalues as 

Ø  However, if a has any real component, one of the 
solutions will grow exponentially, so the only stable 
values are 

Ø  Examining the (invariant) trace of the matrix 

Ø  So the general stability criterion is simply 
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complex generalin  is    where;; 21 aee aa −== λλ

real is    where;; 21 µλλ µµ ii ee −==

[ ] µµµ cos2Tr =+= −ii eeM

[ ]( ) 2Trabs <M



Ø  Recall our FODO cell 

 
Ø  Our stability requirement becomes  
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Ø  We can express the transfer matrix for one period as the sum of an identity matrix 
and a traceless matrix 

 

Ø  The requirement that Det(M)=1 implies 

Ø  We can already identify A=Tr(M)/2=cosµ.  Setting the determinant of the second 
matrix to 1 yields the constraint 

We can identify B=sinµ and write 

 

 

Ø  Note that 

Ø  So we can identify it with i=sqrt(-1) and write 
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“Twiss Parameters” 
not Lorentz parameters!!  

Normalization relationship 
è only two independent 



Ø  If we know the transfer matrix or one period, we can explicitly calculate 
the lattice functions at the ends 

 
 

Ø  If we know the lattice functions at one point, we can use the transfer 
matrix to transfer them to another point by considering the following two 
equivalent things 
u  Going around the ring, starting and ending at point a, then proceeding to point b 

u  Going from point a to point b, then going all the way around the ring 
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Ø  Using 

Ø  We can now evolve the J matrix at any point as 

Ø  Multiplying this mess out and gathering terms, we get 
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Ø  Drift of length L: 

Ø  Thin focusing (defocusing) lens: 
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Ø  For the moment, we will consider curvature in the horizontal (x) 
plane, with a reference trajectory established by the dipole fields.   

Ø  General equation of motion (considering only transverse fields!) 

Ø  We must solve this in the curving coordinate system 
u  Messy but straightforward 
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Ø  We will keep only the first order terms in the magnetic field 

Ø  Expanding in the rotating coordinate system and keeping first order terms… 
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Ø  We have our equations of motion in the form of two “Hill’s Equations” 

 

Ø  This is the most general form for a conservative, periodic, system in which deviations 
from equilibrium small enough that the resulting forces are approximately linear 

Ø  In addition to the curvature term, this can only include the linear terms in the magnetic 
field (ie, the “quadrupole” term) 

Ø  The dipole term is implicitly accounted for in the definition of the reference trajectory 
(local curvature ρ). 

Ø  Any higher order (nonlinear) terms are dealt with as perturbations. 

Ø  Rotated quadruple (“skew”) terms lead to coupling, which we won’t consider here. 
USPAS, Ft. Collins, CO June 13-24, 2016 E. Prebys - Accelerator Fundamentals, Transverse Motion 18 

′′x + Kx (s)x = 0
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Ø  These are second order homogeneous differential equations, so the explicit 
equations of motion will be linearly related to the initial conditions by  

Ø  Exactly as we would expect from our initial naïve treatment of the beam 
line elements. 
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Ø  Again, these equations are in the form 

Ø  For K constant, these equations are quite simple.  For K>0 
(focusing), it’s just a harmonic oscillator and we write 

Ø  In terms if initial conditions, we identify 
and write 
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Ø  For K<0 (defocusing), the solution becomes 

 

Ø  For K=0 (a “drift”), the solution is simply 

Ø  We can now express the transfer matrix of an arbitrarily complex beam line 
with 

Ø  But there’s a limit to what we can do with this 
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Ø  Looking at our Hill’s equation 
 

 

Ø  If K is a constant >0, then                                     so try a solution of the form 

Ø  If we plug this into the equations of motion (and do a lot of math), we find 
that in terms of our Twiss parameterization 
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Super important! 
Remember forever! 



Ø  Generally, we find that we can describe particle motion in terms of 
initial conditions and a “beta function” β(s), which is only a function 
of location in the nominal path. 

∫=
s

s
dss

0 )(
)(

β
ψ

The “betatron function” β(s) is 
effectively the local wavenumber 
and  also defines the beam 
envelope. 

Phase 
advance 

Lateral deviation 
in one plane 

Closely spaced strong quads -> small β -> small aperture, lots of wiggles 

Sparsely spaced weak quads -> large β -> large aperture, few wiggles 

s

x 
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x(s) = A β(s) cos ψ (s)+δ( )

β(s)∝w(s)2



Ø  The general expressions for motion are 
 

 
Ø  We form the combination 

Ø  This is the equation of an ellipse. 
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x = A β cosφ;φ =ψ (s)+δ

′x = − A
β

α cosφ + sinφ( )

γ x2 + 2α x ′x + β ′x 2

= A2 γ β cos2φ − 2α 2 cos2φ − 2α sinφ cosφ +α 2 cos2φ + sin2φ + 2α sinφ cosφ( )
= A2 γ β −α 2( )cos2φ + sin2φ( )
= A2 = constant

x

'x
γA

βA

Area = πA2 

 
Particle will return to a different 
point on the same ellipse each time 
around the ring. 



Ø  If we evaluate the cell at the center of the focusing quad, it looks like 

 
Leading to the transfer Matrix 
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Note: some textbooks 
have L=total length 
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We know from our Twiss Parameterization that this can be written as 
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Ø  As particles go through the lattice, the Twiss parameters will vary 
periodically: 

β

s

x

xʹ′

x

xʹ′

x

xʹ′

x

xʹ′

x

xʹ′

β = max 
α = 0 
èmaximum 

β = decreasing 
α >0 
èfocusing 

β = min 
α = 0 
èminimum 

β = increasing 
α < 0 
èdefocusing 
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Motion at each 
point bounded by  

)()( sAsx β≤



Ø  Let’s look at the Hill’ equation again… 
Ø  We can write the general solution as a linear combination of a “sine-like” 

and “cosine-like” term                                       where 

Ø  When we plug this into the original equation, we see that 

Ø  Since a and b are arbitrary, each function must independently satisfy the 
equation. We further see that when we look at our initial conditions 

Ø  So our transfer matrix becomes 
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Ø  We’ve got a general equation of motion in terms of initial conditions and a 
single “betatron function” β(s) 

Ø  Important note! 
u  β(s) (and therefore α(s) and γ(s)) are defined to have the periodicity of the machine! 

u  In general Ψ(s) (and therefore x(s)) DO NOT! 
u  Indeed, we’ll see it’s very bad if they do 

Ø  So far, we have used the lattice functions at a point s to propagate the particle to 
the same point in the next period of the machine.  We now generalize this to 
transport the beam from one point to another, knowing only initial conditions and 
the lattice functions at both points 
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Ø  We use this to define the trigonometric terms at the initial point as 

Ø  We can then use the sum angle formulas to define the trigonometric terms 
at any point Ψ(s1) as 
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Ø  We plug the previous angular identities for C1 and S1 into the general 
transport equations 

And (after a little tedious algebra) we find 

 
 

 

 
 

Ø  This is a mess, but we’ll often 
restrict ourselves to the extrema 
of β, where 

USPAS, Ft. Collins, CO June 13-24, 2016 E. Prebys - Accelerator Fundamentals, Transverse Motion 31 

( )

( )111
1

1

11111

1
cos

SCAx

CAAx

+−=ʹ′

=+=

α
β

βδψβ

x1
′x1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

β1
β0

cosΔψ +α 0 sinΔψ( ) β0β1 sinΔψ

1
β0β1

α 0 −α1( )cosΔψ − 1+α 0α1( )sinΔψ( ) β0
β1

cosΔψ −α1 sinΔψ( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

x0
′x0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0
2
1

=−=
ds
dβ

α ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ʹ′

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ΔΔ−

ΔΔ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ʹ′

⇒
0

0

1

0

10

10
0

1

1

1

cossin1

sincos

x
x

x
x

ψ
β
β

ψ
ββ

ψββψ
β
β



Ø  It’s important to remember that the betatron function represents a 
bounding envelope to the beam motion, not the beam motion itself 

USPAS, Ft. Collins, CO June 13-24, 2016 E. Prebys - Accelerator Fundamentals, Transverse Motion 32 

Normalized particle trajectory Trajectories over multiple turns 
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β(s) is also effectively the local 
wave number  which determines 
the rate of phase advance 

Closely spaced strong quads è small β è small aperture, lots of wiggles 

Sparsely spaced weak quads è large β è  large aperture, few wiggles 



Ø  As particles go around a ring, they 
will undergo a number of 
betatrons oscillations ν 
(sometimes Q) given by 

Ø  This is referred to as the “tune” 

Ø  We can generally think of the tune in two parts: 

Ideal 
orbit 

Particle trajectory 

∫=
)(2

1
s
ds
βπ

ν

6.7 Integer : magnet/
aperture 

optimization 

Fraction: 
Beam Stability 
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Ø  If the tune is an integer, or low order rational number, then the effect of any 
imperfection or perturbation will tend be reinforced on subsequent orbits. 

Ø  When we add the effects of coupling between the planes, we find this is also 
true for combinations of the tunes from both planes, so in general, we want 
to avoid 

 

Ø  Many instabilities occur when something perturbs the tune of the beam, or 
part of the beam, until it falls onto a resonance, thus you will often hear 
effects characterized by the “tune shift” they produce. 

y)instabilit(resonant integer ⇒=± yyxx kk νν

“small” integers 

fract. part of X tune 

fr
ac

t. 
pa

rt 
of

 Y
 tu

ne
 

èAvoid lines in 
the “tune plane” 
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π
εβ

π
εγ

x

'x
If each particle is described by an ellipse with a 
particular amplitude, then an ensemble of particles will 
always remain within a bounding ellipse of a particular 
area:  

Area = ε

Either leave the π out, or include it explicitly as a “unit”. Thus 

•  microns (CERN) and 

•  π-mm-mr (FNAL) 

Are actually the same units (just remember you’ll never have to explicity 
use π in the calculation) 
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γ x2 + 2α x ′x + β ′x =  or 

π

These are really the same 



Ø  Because distributions normally have long tails, we have 
to adopt a convention for defining the emittance.  The 
two most common are 
u Gaussian (electron machines, CERN): 

u 95% Emittance (FNAL): 

Ø  In general, emittance can be different in the two 
planes, but we won’t worry about that. 
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;   contains 39% of the beam

→σ x = βx

 

95 =
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;   contains 95% of the beam
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Ø  As we go through a lattice, the bounding emittance remains constant 
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large spatial distribution 
small angular distribution 

small spatial distribution 
large angular distribution 



Ø  In our discussions up to now, we assume that all fields scale with 
momentum, so our lattice remains the same, but what happens to the 
ensemble of particles?  Consider what happens to the slope of a particle as 
the forward momentum incrementally increases. 

Ø  If we evaluate the emittance at a point where α=0, we have 
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0γ 0β0( )
γβ

≡ N
γβ
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=constant! 

 
x ' = ε

βT
sin ψ +δ( )



Ø  As a beam is accelerated, the normalized emittance 
remains constant 
u Actual emittance goes down down 

 
u Which means the actual beam size goes down as well  

u The angular distribution at an extremum (α=0) is 

Ø  We almost always use normalized emittance 
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One Superperiod 

81 QF QF 8 1  QD 8 2  8 2  BI B I Q F  - .  1. - - uh - 

Normal Cell (C) Medium / Cell with Medium Straight Section (MI 
Straight Section 

QFE 81 BI 81 Q F O Q D I  Long Straight Section QFI ~ ~ 0 0 2  82 82 82 QDE 82 82 B I  B I  QF 
--€ -- -. - _ .  ----.. .-. 

Cell with Long Straight Section 

Figure 4-1 - Main-Ring Lattice 

Ø  First “separated function” lattice 
Ø  1 km in radius 

Ø  First accelerated protons from 8 to 400 GeV in 1972 
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1968 



Ø  The Main Ring accelerated protons from kinetic energy 
of 8 to 400 GeV* 
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Parameter	
   Symbol	
   Equa0on	
   Injec0on	
   Extrac0on	
  
proton	
  mass	
   m	
  [GeV/c2]	
   0.93827	
  
kine:c	
  energy	
   K	
  [GeV]	
   8	
   400	
  
total	
  energy	
   E	
  [GeV]	
   8.93827	
   400.93827	
  
momentum	
   p	
  [GeV/c]	
   8.88888	
   400.93717	
  
rel.	
  beta	
   β	
   0.994475	
   0.999997	
  

rel.	
  gamma	
   γ	
   9.5263	
   427.3156	
  
beta-­‐gamma	
   βγ	
   9.4736	
   427.3144	
  

rigidity	
   (Bρ)	
  [T-­‐m]	
   29.65	
   1337.39	
  

K +mc2

E2 − mc2( )2

pc( ) / E
E / (mc2 )

p[GeV]/(.2997)

*remember this for problem set 

pc( ) / (mc2 )



Ø  From design report 
u  L=29.74 m 
u  Phase advance µ=71° 
u  Quad Length lquad=2.13 m 

Ø  Beta functions (slide 36) 

 
Ø  Magnet focal length 

Ø  Quad gradient (slide 12) 
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One Superperiod 
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Cell with Long Straight Section 

Figure 4-1 - Main-Ring Lattice 

2f -f 

L L 

2f 
βmax,min = 2L

1± sin µ
2

⎛
⎝⎜

⎞
⎠⎟

sinµ

= 2(29.74)
1± sin 71°

2
⎛
⎝⎜

⎞
⎠⎟

sin 71°

= 99.4 m,  26.4 m

sin µ
2
= L

2 f
→ f = 29.74

2sin(71° / 2)
= 25.61 m

f =
Bρ( )

lquad ′B
→ ′B =

Bρ( )
lquad f

=
1337.39( )

2.13( ) 25.6( ) = 24.5 T/m



Ø  We could calculate α(s),β(s), and γ(s) by hand (slide 25) , but… 

Ø  There have been and continue to be countless accelerator modeling programs; 
however MAD (“Methodical Accelerator Design”), started in 1990, continues to be 
the “Lingua Franca” 
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! 
! One FODO cell from the FNAL Main Ring (NAL Design Report, 1968) 
! 
beam, particle=proton,energy=400.938272,npart=1.0E9; 
 
LQ:=1.067; 
LD:=29.74-2*LQ; 
 
qf: QUADRUPOLE, L=LQ, K1=.0195; 
d: DRIFT, L=LD; 
qd: QUADRUPOLE, L=LQ, K1=-.0195; 
 
fodo: line = (qf,d,qd,qd,d,qf); 
use, period=fodo; 
 
match,sequence=FODO; 
 
SELECT,FLAG=SECTORMAP,clear; 
SELECT,FLAG=TWISS,column=name,s,betx,alfx,bety,alfy,mux,muy; 
TWISS,SAVE; 
 
PLOT,interpolate=true,,colour=100,HAXIS=S, VAXIS1=BETX,BETY; 
PLOT,interpolate=true,,colour=100,HAXIS=S, VAXIS1=ALFX,ALFY; 
 
stop; 

main_ring.madx 

half quad 
K1=1/(2f) 

build FODO cell 

force periodicity 

calculate Twiss parameters 
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ỳ

(m
)

` x` y

0.0 10. 20. 30. 40. 50. 60.
                               s (m)

fodo MAD-X 5.00.00  14/03/14 11.31.24

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

_x
,_

y

_ x _ y

98.4m (exact) vs.  
99.4m (thin lens) 

24.7m   
vs. 26.4m 



Ø  We normally use 95% emittance at Fermilab, and 95% normalized emittance of the 
beam going into the Main Ring was about  12 π-mm-mr, so the normalized RMS 
emittance would be 

 
Ø  We combine this with the equations (slide 45), beam parameters (slide 47) and 

lattice functions (slide 48) to calculate the beam sizes at injection and extraction. 
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RMS ≈

95

6
= 2 π -mm-mrad = 2 ×10−6  m We have divided out the “π” 

Parameter	
   Symbol	
   Equa0on	
   Injec0on	
   Extrac0on	
  
kine:c	
  energy	
   K	
  [GeV]	
   8	
   400	
  
beta-­‐gamma	
   βγ	
   9.4736	
   427.3144	
  

normalized	
  emiPance	
   2x10-­‐6	
  

beta	
  at	
  QF	
   99.4	
  
beta	
  at	
  QD	
   26.4	
  

x	
  size	
  at	
  QF	
   4.58	
   .68	
  

y	
  size	
  at	
  QF	
   2.36	
   .35	
  

x	
  ang.	
  spread	
  at	
  QF	
   46.1x10-­‐6	
   6.9x10-­‐6	
  

y	
  ang.	
  spread	
  at	
  QF	
   89.5x10-­‐6	
   13.3x10-­‐6	
  

 N  [m]
βmax  [m]
βmin  [m]

σ x  [mm]
 

βmaxN
βγ

σ y  [mm]
 

βminN
βγ

σ ′x
 

N
βmaxβγ

σ ′y
 

N
βminβγ



Ø  In our definition and derivation of the lattice function, a closed path 
through a periodic system.  This definition doesn’t exist for a beam line, 
but once we know the lattice functions at one point, we know how to 
propagate the lattice function down the beam line. 
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Ø  When extracting beam from a ring, the initial optics of the beam line are 
set by the optics at the point of extraction. 

Ø  For particles from a source, the initial lattice functions can be defined by 
the distribution of the particles out of the source 
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Ø  In our previous discussion, we implicitly assumed that the distribution of 
particles in phase space followed the ellipse defined by the lattice function 

Ø  Once injected, these particles will  
follow the path defined by the lattice  
ellipse, effectively increasing the  
emittance 

USPAS, Ft. Collins, CO June 13-24, 2016 E. Prebys - Accelerator Fundamentals, Transverse Motion 47 

π
εβ

π
εγ

x

'x

Area = ε

…but there’s no guarantee  
What happens if this it’s not? 

'x

x

Lattice 
ellipse 

Injected 
particle 
distribution 'x

x
Effective 
(increased) 
emittance 



Ø  In spite of the name, g4beamline is not really a beam 
line tool. 
u Does not automatically handle recirculating or periodic systems 
u Does not automatically determine reference trajectory 
u Does not match or directly calculate Twiss parameters 

u  Fits particle distributions to determine Twiss parameters and 
statistics. 

Ø  Nevertheless, it’s so easy to use, that we can work 
around these shortcomings  
u Create a series of FODO cells 
u Carefully match our initial particle distributions to the 

calculations we just made. 
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Ø  We’ve calculated everything we need to easily create a 
string of FODO cells based on the Main Ring 
u Won’t worry about bends 
u Phase advance per cell = 71°, so need at least at least ~5 cells to 

see one betatron period.  Let’s do 8. 

Ø  First, create a quadrupole 

USPAS, Ft. Collins, CO June 13-24, 2016 E. Prebys - Accelerator Fundamentals, Transverse Motion 49 

# Main Ring FODO cell
param L=29740. 
param QL=2133.3  
param aperture=50.    # Not really important
param -unset gradient=24.479
param -unset nCell=8
genericquad MRQuad fieldLength=$QL ironLength=$QL apertureRadius=$aperture ironRadius=5*$aperture  kill=1 

kill=1 saves time if you make a mistake! 

Doesn’t really look like a 
real quadrupole, but the 
field is right and that’s all 
that matters. 



Ø  Create 8 cells by putting 16 of  
these, spaced 29740 mm apart,  
with alternating gradients (good  
practice for doing loops in g4bl). 
u  If we put the first quad at z=0., the beam  

will start the middle of it.  Is this what we  
want? Why or why not? 

Ø  We create a Gaussian beam based on the 
parameters we calculated on Slide 50 

Ø  We want to track the first hundred particles individually, so we add 

Ø  We want to fit the distributions at regular intervals to calculate the beam widths 
and Twiss parameters. so we add the lines 

Ø  Now run 1000 events 
u  Need enough for robust fits 
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trace nTrace=100 oneNTuple=1 primaryOnly=1 

beam gaussian sigmaX=.682 sigmaXp=.00000686 sigmaY=.351 sigmaYp=.00001332 \
       meanMomentum=$P nEvents=$nEvents particle=proton

param totlen=2*$nCell*$L
profile zloop=0:$totlen:100 particle=proton file=main_ring_profile.txt



Ø  The individual track information is written to the standard root output file 
in an Ntuple called “AllTracks” 

Ø  The profile information is written to a text file.  This can be read directly 
into histoRoot.  I’ve provided a class (G4BLProfile) to load it into root* 

Ø  We want to create a plotting space on which we can overlay several plots.  
The easiest way I know do to this is an empty 2D histogram. 

Ø  Overlay a 3 sigma “envelope”, based on the fitted profiles 
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 TFile ft("g4beamline.root");
 TNtuple *t = (TNtuple *) ft.FindObjectAny("AllTracks");

*http://home.fnal.gov/~prebys/misc/NIU_Phys_790/ 

 G4BLProfile fp(filename);
 TNtuple *p = fp.getNtuple();

 TH2F plot("plot","Track Trajectories",2,0,sMax,2,-xMax,xMax);
 plot.SetStats(kFALSE); //turn off annoying stats box
 plot.Draw();

 p->Draw("3*sigmaX:Z","","same"); 
 p->Draw("-3*sigmaX:Z","","Same"); 

“same” option draws over existing plot 
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 t->SetMarkerColor(kRed); // These are points, not lines
 t->Draw("x:z","EventID==1","same");
...

71°
~ 360° = betatron period



Ø  If we overlay all 100 tracks (remove “EventID” cut), we  see that although 
each track has a periodicity of ~5 cells, the envelope has a periodicity of 
one cell.. 

USPAS, Ft. Collins, CO June 13-24, 2016 E. Prebys - Accelerator Fundamentals, Transverse Motion 53 



Ø  We can plot the fitted lattice functions and compare them to our calculations. 
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TH2F beta("beta","Horizontal (black) and Vertical Beta Functions",2,0.,sMax,2,0.,120000.); 
beta.SetStats(kFALSE);  
beta.Draw(); 
p->Draw("betaX:Z","","same"); 
p->SetMarkerColor(kRed); 
p->Draw("betaY:Z","","same"); 
  

beta functions in mm! 
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Ø  In our previous discussion, we implicitly assumed that the distribution of 
particles in phase space followed the ellipse defined by the lattice function 

Ø  Once injected, these particles will  
follow the path defined by the lattice  
ellipse, effectively increasing the  
emittance 
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Ø  In our example, we carefully matched our initial distributions to the 
calculated lattice parameters at the center of the magnet.  If we start 
these same distributions just ~1m upstream, at the entrance to the 
magnet, things aren’t so nice. 
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Individual track trajectories look 
similar (of course) 

Envelope looks totally crazy 



Ø  If we fit the beta functions of these distributions, we see that the original 
periodicity is completely lost now. 

 
Ø  Therefore, lattice matching is very important when injecting, extracting, 

or transitioning between different regions of a beam line! 
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