Particle Accelerators: Introduction and Overview

Eric Prebys, FNAL
This talk will serve as an overview of accelerator physics and the history of accelerators.

The goal is to get everyone to a similar level in terms of the qualitative understanding of things like:
- "Lattice"
- "Beta function"
- "Tune"
- "Emittance"
- "RF"
- etc...

We’ll cover all of these in much greater detail in the days to come, so this will serve as a preview.
- Don’t worry if you don’t understand everything right away.
Going to higher energies = going back in time
Accelerators allow us to go back 13.8 billion years and recreate conditions that existed a few trillionths of a second after the Big Bang — the place where our current understanding of physics breaks down.

In addition to high energy, we need high “luminosity” — that is, lots of particles interacting, to see rare processes.
Units of energy: Electron Volts

- An “electron-volt” is the energy gained by a particle of unit charge is accelerated over 1V potential
- It is really small
 - $1\text{eV} = 1.6 \times 10^{-19}$ (≈ .00000000000000000016) Joules - our usual unit of energy.
 - A 1 kg weight dropped 1m would have 6×10^{18} eV of energy!
- On the other hand, it’s a very useful unit when talking about individual particles
 - If we accelerate a proton using an electrical potential, we know exactly what the energy is.
 - It’s also useful when thinking about mass/energy equivalence

$$(\text{proton mass}) \times c^2 = 938,000,000 \text{ eV} \approx 1 \text{ billion eV} = 1 \text{ GeV}$$

$$(\text{electron mass}) \times c^2 = 511,000 \text{ eV} \approx \frac{1}{2} \text{ MeV}$$
Quantum mechanics tells us all particles have a wavelength "Planck Constant"

$$\lambda = \frac{h}{p} \approx \frac{\text{size of a proton}}{\text{Energy (in GeV)}}$$

So going to higher energy allows us to probe smaller and smaller scales

If we put the high equivalent mass and the small scales together, we have...
Understanding Energy

- High Energy Physics is based on Einstein’s equivalence of Mass and Energy
 \[E = mc^2 \]
- All reactions involve some mass changing either to or from energy

Chemical Explosion

.00000005% of mass converted to energy.

Hydrogen Bomb

~.1% (of just the Hydrogen!) converted.

- If we could convert a kilogram of mass entirely to energy, it would supply all the electricity in the United States for almost a day.
A body in motion will have a total energy given by

\[E = \frac{mc^2}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \equiv \gamma mc^2 \]

The difference between this and \(mc^2 \) is called the “kinetic energy”

Here are some examples of kinetic energy

\[c = \text{(speed of light)} = 300,000 \text{ km/s!} \]

\[\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \]

For \(v \ll c \) (speed of light), Kinetic energy \(\sim \frac{1}{2}mv^2 \)
Built at CERN, straddling the French/Swiss border
27 km in circumference
Currently colliding beams of 6.5 TeV/beam
 • Design energy of 7 TeV
That’s where we are. Now let’s see how we got here…
Basic Relativity

\[\beta = \frac{v}{c} \]

\[\gamma = \frac{1}{\sqrt{1 - \beta^2}} \]

momentum \(p = \gamma mv \)

total energy \(E = \gamma mc^2 \)

kinetic energy \(K = E - mc^2 \)

\[E = \sqrt{(mc^2)^2 + (pc)^2} \]

Units

- For the most part, we will use SI units, except
 - Energy: eV (keV, MeV, etc) \([1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}] \)
 - Mass: eV/c\(^2\) \[\text{[proton} = 1.67 \times 10^{-27} \text{ kg} = 938 \text{ MeV/c}^2] \)
 - Momentum: eV/c \[\text{[proton} @ \beta = .9 = 1.94 \text{ GeV/c} \]

- In the US and Europe, we normally talk about the kinetic energy (\(K \)) of a particle beam, although we’ll see that momentum really makes more sense.

Some Handy Relationships

\[\beta = \frac{pc}{E} \]

\[\gamma = \frac{E}{mc^2} \]

\[\beta \gamma = \frac{pc}{mc^2} \]

These units make these relationships really easy to calculate.

Remember forever!
The first artificial acceleration of particles was done using “Crookes tubes”, in the latter half of the 19th century.

- These were used to produce the first X-rays (1875)
- At the time no one understood what was going on

The first “particle physics experiment” told Ernest Rutherford the structure of the atom (1911)

- In this case, the “accelerator” was a naturally decaying ^{235}U nucleus

Study the way radioactive particles “scatter” off of atoms
Radioactive sources produce maximum energies of a few million electron volts (MeV)

Cosmic rays reach energies of \(~1,000,000,000 \times \text{LHC}\) but the rates are too low to be useful as a study tool

- Not enough “luminosity”

However, low energy cosmic rays are extremely useful for detector testing, commissioning, etc.
The simplest accelerators accelerate charged particles through a static electric field. Example: vacuum tubes (or CRT TV’s)

\[K = eEd = eV \]

Limited by magnitude of electric field:
- CRT display \(\sim\) keV
- X-ray tube \(\sim\)10’s of keV
- Van de Graaf \(\sim\)MeVs

Solutions:
- Alternate fields to keep particles in accelerating fields -> Radio Frequency (RF) acceleration
- Bend particles so they see the same accelerating field over and over -> cyclotrons, synchrotrons
Interlude: Electrons vs. Protons

- Electrons are point-like
 - Well-defined initial state
 - Full energy available to interaction

- Protons are made of quarks and gluons
 - Interaction take place between these constituents.
 - Only a small fraction of energy available, not well-defined.
 - Rest of particle fragments -> big mess!

So why not stick to electrons?
As the trajectory of a charged particle is deflected, it emits “synchrotron radiation”

\[
\text{Radiated Power} \propto \frac{1}{\rho^2} \left(\frac{E}{m} \right)^4
\]

An electron will radiate about 10^{13} times more power than a proton of the same energy!!!!

- **Protons**: Synchrotron radiation does not affect kinematics very much
 - Energy limited by strength of magnetic fields and size of ring

- **Electrons**: Synchrotron radiation dominates kinematics
 - To go higher energy, we have to *lower* the magnetic field and go to huge rings
 - Eventually, we lose the benefit of a circular accelerator, because we lose all the energy each time around.

Since the beginning, the “energy frontier” has belonged to proton (and/or antiproton) machines, while electrons are used for precision studies and other purposes.

Now, back to the program...
The Cyclotron (1930’s)

A charged particle in a uniform magnetic field will follow a circular path of radius

\[\rho = \frac{p}{qB} \approx \frac{mv}{qB} \quad (v \ll c) \]

\[f = \frac{v}{2\pi\rho} \]

\[= \frac{qB}{2\pi m} \quad \text{(constant!!)} \]

\[\Omega_s = 2\pi f = \frac{qB}{m} \]

For a proton:

\[f_c = 15.2 \times B[T] \quad \text{MHz} \]

i.e. “RF” range

would not work for electrons!

Accelerating “DEES”: by applying a voltage which oscillates at \(f_c \), we can accelerates the particle a little bit each time around, allowing us to get to high energies with a relatively small voltage.
Round and Round We Go: the First Cyclotrons

- **~1930 (Berkeley)**
 - Lawrence and Livingston
 - K=80 keV
 - Fit in your hand

- **1935 - 60” Cyclotron**
 - Lawrence, et al. (LBL)
 - ~19 MeV (D.)
 - Prototype for many
Cyclotrons were limited by three problems:

- Constant frequency breaks down at ~10% speed of light
 - Solved with variable frequency “synchro-cyclotrons”
 - Phase stability (more about this later)
- As energy goes up, magnet gets huge
- Beams are not well focused and get larger with energy

Two major advances allowed accelerators to go beyond the energies and intensities possible at cyclotrons:

- “Synchrotron” - in which the magnetic field is increased as the energy increases (proportional to momentum), such that particles continue to follow the same path.
- “Strong focusing” - a technique in which magnetic gradients (non-uniform fields) are used to focus particles and keep them in a smaller beam pipe than was possible with cyclotrons.

Note: still plenty of uses for cyclotrons (simple, inexpensive, rapid cycling)

- Medical treatments
- Isotope production
- Nuclear physics
The relativistically correct form of Newton’s Laws for a particle in an electromagnetic field is:

\[\vec{F} = \frac{d\vec{p}}{dt} = q\left(\vec{E} + \vec{v} \times \vec{B}\right); \vec{p} = \gamma m\vec{v} \]

A particle of unit charge in a uniform magnetic field will move in a circle of radius

\[\rho = \frac{p}{eB} \]

\[(B\rho) = \frac{p}{e} \]

constant for fixed energy!

T-m^2/s=V

\[(B\rho)c = \frac{pc}{e} \]

units of eV in our usual convention

Beam “rigidity” = constant at a given momentum (even when B=0!)

\[(B\rho)[T-m] = \frac{p[eV/c]}{c[m/s]} \approx \frac{p[MeV/c]}{300} \]

Remember forever!

If all magnetic fields are scaled with the momentum as particles accelerate, the trajectories remain the same ➔ “synchrotron” [E. McMillan, 1945]
Example Beam Parameters

- **Compare Fermilab LINAC** (K=400 MeV) to **LHC** (K=7000 GeV)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Equation</th>
<th>Injection</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>proton mass</td>
<td>m [GeV/c^2]</td>
<td>$p^2 = (E/mc^2)^2$</td>
<td>0.938</td>
<td></td>
</tr>
<tr>
<td>kinetic energy</td>
<td>K [GeV]</td>
<td>$K + mc^2$</td>
<td>.4</td>
<td>7000</td>
</tr>
<tr>
<td>total energy</td>
<td>E [GeV]</td>
<td>$E = \sqrt{K + mc^2}$</td>
<td>1.3382</td>
<td>7000.938</td>
</tr>
<tr>
<td>momentum</td>
<td>p [GeV/c]</td>
<td>$\frac{pc}{E}$</td>
<td>0.95426</td>
<td>7000.938</td>
</tr>
<tr>
<td>rel. beta</td>
<td>β</td>
<td>$\left(\frac{pc}{E}\right)$</td>
<td>0.713</td>
<td>0.99999999991</td>
</tr>
<tr>
<td>rel. gamma</td>
<td>γ</td>
<td>$\frac{E}{mc^2}$</td>
<td>1.426</td>
<td>7461.5</td>
</tr>
<tr>
<td>beta-gamma</td>
<td>$\beta\gamma$</td>
<td>$\left(\frac{pc}{mc^2}\right)$</td>
<td>1.017</td>
<td>7461.5</td>
</tr>
<tr>
<td>rigidity</td>
<td>(Bρ) [T-m]</td>
<td>$\frac{p[GeV]}{(.2997)}$</td>
<td>3.18</td>
<td>23353.</td>
</tr>
</tbody>
</table>

This would be the radius of curvature in a 1 T magnetic field or the field in Tesla needed to give a 1 m radius of curvature.
Cyclotrons relied on the fact that magnetic fields between two pole faces are never perfectly uniform. This prevents the particles from spiraling out of the pole gap. In early synchrotrons, radial field profiles were optimized to take advantage of this effect, but in any weak focused beams, the beam size grows with energy. The highest energy weak focusing accelerator was the Berkeley Bevatron, which had a kinetic energy of 6.2 GeV—high enough to make antiprotons (and win a Nobel Prize) and had an aperture 12”x48”!

E. Prebys, Accelerator Fundamentals: Overview
Strong Focusing

- Strong focusing utilizes alternating magnetic gradients to precisely control the focusing of a beam of particles
 - The principle was first developed in 1949 by Nicholas Christofilos, a Greek-American engineer, who was working for an elevator company in Athens at the time.
 - Rather than publish the idea, he applied for a patent, and it went largely ignored.
 - The idea was independently invented in 1952 by Courant, Livingston and Snyder, who later acknowledged the priority of Christofilos’ work.
 - Courant and Snyder wrote a follow-up paper in 1958, which contains the vast majority of the accelerator physics concepts and formalism in use to this day!
- Although the technique was originally formulated in terms of magnetic gradients, it’s much easier to understand in terms of the separate functions of dipole and quadrupole magnets.
Strong focusing was originally implemented by building magnets with non-parallel pole faces to introduce a linear magnetic gradient.

\[B_y(x) = B_0 + \frac{\partial B_y}{\partial x} x \]

Later synchrotrons were built with physically separate dipole and quadrupole magnets. The first “separated function” synchrotron was the Fermilab Main Ring (1972, 400 GeV).

Strong focusing is also much easier to teach using separated functions, so we will...
If the path length through a transverse magnetic field is short compared to the bend radius of the particle, then we can think of the particle receiving a transverse “kick”, which is proportional to the integrated field.

\[p_\perp \approx qvBt = qvB(l/v) = qBl \]

and it will be bent through small angle

\[\Delta \theta \approx \frac{p_\perp}{p} = \frac{Bl}{(B\rho)} \]

In this “thin lens approximation”, a dipole is the equivalent of a prism in classical optics.
A positive particle coming out of the page off center in the horizontal plane will experience a *restoring* kick proportional to the displacement

\[\Delta \theta \approx - \frac{B_y l}{(B \rho)} = - \frac{B' l x}{(B \rho)} \]

Note: \(\vec{\nabla} \times \vec{B} = 0 \rightarrow \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y} = B' \)

*or quadrupole term in a gradient magnet
What About the Other Plane?

Luckily, if we place equal and opposite pairs of lenses, there will be a net focusing *regardless of the order*.

\[f = -\frac{(B\rho)}{B'l} \]

Defocusing!

\[B_x = \frac{\partial B_x}{\partial y} y \]

\[\Rightarrow \text{pairs give net focusing in both planes} \rightarrow \text{“FODO cell”} \]
Formalism: Coordinates and Conventions

- We generally work in a right-handed coordinate system with x horizontal, y vertical, and s along the *nominal* trajectory ($x=y=0$).

Particle trajectory defined at any point in s by location in x,x' or y,y' “phase space”

$\frac{dx}{ds} \equiv x' \approx \theta$

unique initial phase space point \Rightarrow unique trajectory

Note: s (rather than t) is the independent variable.
Transfer Matrices

- Dipoles **define** the trajectory, so the simplest magnetic “lattice” consists of quadrupoles and the spaces in between them (drifts). We can express each of these as a linear operation in phase space.

\[
\Delta \theta = \Delta x' = -\frac{x}{f}
\]

Quadrupole:

\[
x = x(0) \\
x' = x'(0) - \frac{1}{f}x(0) \quad \Rightarrow \begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} x(0) \\ x'(0) \end{pmatrix}
\]

Drift:

\[
x(s) = x(0) + sx'(0) \\
x'(s) = x'(0) \quad \Rightarrow \begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x(0) \\ x'(0) \end{pmatrix}
\]

- By combining these elements, we can represent an arbitrarily complex ring or line as the product of matrices.

\[
M = M_N \ldots M_2 M_1
\]
At the heart of every beam line or ring is the basic “FODO” cell, consisting of a focusing and a defocusing element, separated by drifts:

\[
\begin{pmatrix}
 f \\
 \underline{L} \\
 -f
\end{pmatrix}
\]

Can build this up to describe any beam line or ring.

\[
\Rightarrow M = \begin{pmatrix}
 1 & L \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 1 & 0 \\
 1 & 1
\end{pmatrix}
\begin{pmatrix}
 1 & 0 \\
 -1/f & 1
\end{pmatrix}
= \begin{pmatrix}
 1 - \frac{L}{f} - \left(\frac{L}{f}\right)^2 & 2L + \frac{L^2}{f} \\
 -\frac{L}{f^2} & 1 + \frac{L}{f}
\end{pmatrix}
\]

Remember: motion is usually drawn from left to right, but matrices act from right to left!

Sign of \(f \) flips in other plane.
You might think, “Start with a beam line, then make a ring out of it.”
- Difficult to solve general case, because it depends on the initial conditions
- Therefore, we initially solve for stable motion in a periodic system
- We can think of a ring made of identical FODO cells as just the same cell, over and over.

\[M_{ring} = M_{cell} \cdot M_{cell} \cdots M_{cell} = M_{cell}^N \]

- Our goal is to decouple the problem into two parts
 - The “lattice”: a mathematical description of the machine itself, based only on the magnetic fields, which is identical for each identical cell
 - The “emittance”: mathematical description for the ensemble of particles circulating in the machine.

- Extend to beam lines by using boundary conditions (“matching”)

Periodic Systems

We find (after a lot of algebra) that we can describe particle motion in terms of initial conditions and a “beta function” $\beta(s)$, which is only a function of location along the nominal path, and follows the periodicity of the machine.

$$\beta(s)$$

In other words, particles undergo “pseudo-harmonic” motion about the nominal trajectory, with a variable wavelength.

Note: β has units of [length], so the amplitude has units of [length]$^{1/2}$.
It’s important to remember that the betatron function represents a bounding envelope to the beam motion, not the beam motion itself.

Normalized particle trajectory

Trajectories over multiple turns (or trajectories of multiple particles!)

\[x(s) = A \left[\beta(s) \right]^{1/2} \sin(\psi(s) + \delta) \]

\[\psi(s) = \int_0^s \frac{ds}{\beta(s)} \]

\[\beta(s) \] is also effectively the local wave number which determines the rate of phase advance.

Closely spaced strong quads \(\Rightarrow \) small \(\beta \) \(\Rightarrow \) small aperture, lots of wiggles

Sparsely spaced weak quads \(\Rightarrow \) large \(\beta \) \(\Rightarrow \) large aperture, few wiggles
A particle returning to the same point over many terms traces an ellipse, defined by the “beta function”, \(\beta \), and two additional lattice parameters, \(\alpha \) and \(\gamma \).

\[
\beta x'^2 + 2\alpha xx' + \gamma x^2 = A^2 = \text{constant}
\]

\[
\alpha = -\frac{1}{2} \frac{d\beta}{ds}
\]

\[
\gamma = \frac{1 + \alpha^2}{\beta}
\]

NOT to be confused with relativistic \(\beta \) and \(\gamma \)!

An ensemble of particles can characterized by a bounding ellipse, known as the “emittance”

- Definitions vary: RMS, 95%, 99%, etc

\[
\beta x' + 2\alpha xx' + \gamma x^2 = \epsilon
\]

Units of length

Area = \(\epsilon \pi \)
If we use the Gaussian definition emittance, then the beam size is

\[\sigma_x = \sqrt{\beta_x \epsilon} \]

Emittance is constant at a constant energy, but as particles accelerate, the emittance decreases

\[\epsilon \propto \frac{1}{\beta \gamma} \]

This is known as “adiabatic damping”. We therefore define a “normalized emittance”

\[\epsilon_N \equiv \beta \gamma \epsilon \]

which is constant with energy. Thus, at a particular energy

\[\sigma_x = \sqrt{\frac{\beta_x \epsilon_N}{\beta \gamma}} \propto \frac{1}{\sqrt{p}} \]

Relativistic \(\beta \) and \(\gamma \)
(yes, I know it’s confusing)
As we go through a lattice the shape in phase space varies, by the bounding emittance remains constant.

- $\beta = \max$, $\alpha = 0$ ➞ maximum
- $\beta = \text{decreasing}$, $\alpha > 0$ ➞ focusing
- $\beta = \min$, $\alpha = 0$ ➞ minimum
- $\beta = \text{increasing}$, $\alpha < 0$ ➞ defocusing

large spatial distribution
small angular distribution

small spatial distribution
large angular distribution
As particles go around a ring, they will undergo a number of betatrons oscillations ν (sometimes Q) given by

$$\nu = \frac{1}{2\pi} \int \frac{ds}{\beta(s)}$$

This is referred to as the “tune”

We can generally think of the tune in two parts:

- Integer: magnet/aperture optimization
- Fraction: Beam Stability

6.7
If the tune is an integer, or low order rational number, then the effect of any imperfection or perturbation will tend be reinforced on subsequent orbits.

When we add the effects of coupling between the planes, we find this is also true for combinations of the tunes from both planes, so in general, we want to avoid

\[k_x \nu_x \pm k_y \nu_y = \text{integer} \Rightarrow \text{(resonant instability)} \]

“small” integers

Many instabilities occur when something perturbs the tune of the beam, or part of the beam, until it falls onto a resonance, thus you will often hear effects characterized by the “tune shift” they produce.

- For example: the maximum tune shift sets the absolute luminosity limit in a collider
We will generally accelerate particles using structures that generate time-varying electric fields (RF cavities), either in a linear arrangement or located within a circulating ring.

In both cases, we want to phase the RF so a nominal arriving particle will see the same accelerating voltage and therefore get the same boost in energy.

$$\Delta E_s = eV_0 \sin \phi_s$$

$$\phi = t\omega_{RF}$$
Examples of Accelerating RF Structures

Fermilab Drift Tube Linac (200MHz): oscillating field uniform along length

37->53MHz Fermilab Booster cavity

ILC prototype elipical cell “π-cavity” (1.3 GHz): field alternates with each cell
Phase Stability

- A particle with a slightly different energy will arrive at a slightly different time, and experience a slightly different acceleration.

- Longitudinal motion about stable phase referred to as “synchrotron motion”.
 - Takes many revolutions to complete one longitudinal cycle in a synchrotron, so multiple RF cavities are just seen as a vector sum.

\[\frac{\Delta \tau}{\tau} = \eta \frac{\Delta p}{p} \]

“slip factor” = dependence of period on momentum
- negative for linacs
- positive for (relativistic) cyclotrons
- goes from negative to positive in synchrotrons (“transition”) Stable point depends on sign.
Some Important Early Synchrotrons

Berkeley Bevatron,
- 1954 (weak focusing)
- 6.2 GeV protons
- Discovered antiproton

CERN Proton Synchrotron (PS)
- 1959
- 628 m circumference
- 28 GeV protons
- Still used in LHC injector chain!

Brookhaven Alternating Gradient Synchrotron (AGS)
- 1960
- 808 m circumference
- 33 GeV protons
- Discovered charm quark, CP violation, muon neutrino

E. Prebys, Accelerator Fundamentals: Overview
Getting the Most Energy: The Case for Colliders

- If beam hits a stationary proton, the “center of mass” energy is

- On the other hand, for colliding beams (of equal mass and energy) it’s

\[E_{CM} = \sqrt{2E_{beam} m_{target} c^2} \]

\[E_{CM} = 2E_{beam} \]

- To get the 14 TeV CM design energy of the LHC with a single beam on a fixed target would require that beam to have an energy of 100,000 TeV!

- Would require a ring 10 times the diameter of the Earth!!

Getting to the highest energies requires colliding beams
Luminosity

The relationship of the beam to the rate of observed physics processes is given by the “Luminosity”

\[R = L \sigma \]

Standard unit for Luminosity is cm\(^{-2}\)s\(^{-1}\)
Standard unit of cross section is “barn”=10\(^{-24}\) cm\(^2\)
Integrated luminosity is usually in barn\(^{-1}\), where

\[b^{-1} = (1 \text{ sec}) \times (10^{24} \text{ cm}^{-2} \text{ s}^{-1}) \]

\[nb^{-1} = 10^9 b^{-1}, \; fb^{-1}=10^{15} b^{-1}, \; \text{etc} \]

For (thin) fixed target:

\[R = N \rho_n t \sigma \Rightarrow L = N \rho_n t \]

Incident rate

Target number density

Target thickness

Example: MiniBooNe primary target:

\[L \approx 10^{37} \text{ cm}^{-2} \text{ s}^{-1} \]
For equally intense Gaussian beams

\[L = f \frac{N_b^2}{4\pi \sigma^2} R \]

Using \(\sigma^2 = \frac{\beta^* \epsilon_N}{\beta \gamma} \approx \frac{\beta^* \epsilon_N}{\gamma} \) we have

\[L = f_{\text{rev}} \frac{1}{4\pi} nN_b \frac{\gamma}{\beta^* \epsilon_N} R \]

Particles in a bunch

Collision frequency

Geometrical factor:
- crossing angle
- hourglass effect

Transverse size (RMS)

prop. to energy

Normalization of emittance

Betatron function at collision point

want a small \(\beta^* \)!

Record e+e- Luminosity (KEK-B):
2.11x10^{34} \text{ cm}^{-2}\text{s}^{-1}

Record p-pBar Luminosity (Tevatron):
4.06x10^{32} \text{ cm}^{-2}\text{s}^{-1}

Record Hadronic Luminosity (LHC):
7.0x10^{33} \text{ cm}^{-2}\text{s}^{-1}

LHC Design Luminosity:
1.00x10^{34} \text{ cm}^{-2}\text{s}^{-1}
First e^+e^- Collider

- ADA (Anello Di Accumulazione) at INFN, Frascati, Italy (1961)
 - 250 MeV $e^+ \times 250$ MeV e^-

- It’s easier to collide e^+e^-, because synchrotron radiation naturally “cools” the beam to smaller size.
1971
31 GeV + 31 GeV colliding proton beams.
- Highest CM Energy for 10 years
- Set a luminosity record that was not broken for 28 years!
Protons from the SPS were used to produce antiprotons, which were collected. These were injected in the opposite direction (same beam pipe) and accelerated. First collisions in 1981. Discovery of W and Z in 1983. Nobel Prize for Rubbia and Van der Meer.

- Energy initially 270+270 GeV
- Raised to 315+315 GeV
- Limited by power loss in magnets!
The maximum SpīS energy was limited by the maximum power loss that the conventional magnets could support.

- LHC made out of such magnets would be roughly the size of Rhode Island!

Highest energy colliders only possible using superconducting magnets

Must take the bad with the good

- Conventional magnets are simple and naturally dissipate energy as they operate
- Superconducting magnets are complex and represent a great deal of stored energy which must be handled if something goes wrong

R&D into superconducting technology is absolutely critical in the quest for the highest energies (made Tevatron and LHC possible!)

Machine protection is one of the biggest challenges.
Superconductor can change phase back to normal conductor by crossing the “critical surface”

When this happens, the conductor heats quickly, causing the surrounding conductor to go normal and dumping lots of heat into the liquid Helium “quench”

- all of the energy stored in the magnet must be dissipated in some way

Dealing with quenches is the single biggest issue for any superconducting synchrotron!
Quench Example: MRI Magnet*

*pulled off the web. We recover our Helium.
Milestones on the Road to a Superconducting Collider

- 1911 - superconductivity discovered by Heike Kamerlingh Onnes
- 1957 - superconductivity explained by Bardeen, Cooper, and Schrieffer
 - 1972 Nobel Prize (the second for Bardeen!)
- 1962 - First commercially available superconducting wire
 - NbTi, the “industry standard” since
- 1978 - Construction began on ISABELLE, first superconducting collider (200 GeV+200 GeV) at Brookhaven.
 - 1983, project cancelled due to design problems, budget overruns, and competition from...
1968 - Fermilab Construction Begins
1972 - Beam in Main Ring
 (normal magnets)
Plans soon began for a superconducting collider to share the ring.
 Dubbed “Saver Doubler” (later “Tevatron”)
1985 - First proton-antiproton collisions in Tevatron
 Most powerful accelerator in the world for the next quarter century
1995 - Top quark discovery
2011 - Tevatron shut down after successful LHC startup
1980’s - US begins planning in earnest for a 20 TeV+20 TeV “Superconducting Super Collider” or (SSC).
- 87 km in circumference!
- Considered superior to the “Large Hadron Collider” (LHC) then being proposed by CERN.

1987 - site chosen near Dallas, TX

1989 - construction begins

1993 - amidst cost overruns and the end of the Cold War, the SSC is cancelled after 17 shafts and 22.5 km of tunnel had been dug.

2001 - After the end of the LEP program at CERN, work begins on reusing the 27 km tunnel for the 7 TeV+ 7 TeV LHC
- Straddles French/Swiss border near Geneva, Switzerland
- Tunnel originally dug for LEP
 - Built in 1980’s as an electron positron collider
 - Max 100 GeV/beam, but 27 km in circumference!!
LHC Layout and Numbers

Design:

- 7 TeV+7 TeV proton beams
 - 7 times Fermilab Tevatron
 - Magnets have two beam pipes, one going in each direction.
- Stored beam energy 150 times more than Tevatron
 - Each beam has only 5x10^{-10} grams of protons, but has the energy of a train going 100 mph!!
- These beams are focused to a size smaller than a human hair to collide with each other!

- 27 km in circumference
- 2 major collision regions: CMS and ATLAS
- 2 “smaller” regions: ALICE and LHCb
Partial LHC Timeline

- **2008**
 - September 10\(^{th}\): First circulating beam
 - September 19\(^{th}\): BAD accident brings beam down for over a year (remember what I said about machine protection!)

- **2009**
 - November 20\(^{th}\): Particles circulate again

- **2010**
 - March 30\(^{th}\): 3.5 + 3.5 TeV collisions
 - Energy limited by flaw which caused accident

- **2012**
 - April 5\(^{th}\): Energy increased to 4 + 4 TeV
 - July 4\(^{th}\): Announced the discovery of the Higgs

- **2013**
 - Feb. 14\(^{th}\): Start 2 year shutdown to address design flaw and allow full energy operation

- **2015**
 - Mar. 7: protons injected
 - May 20: 6.5+6.5 TeV protons collided

The LHC will (probably) be the flagship of the Energy Frontier for at least the next 20 years!
Evolution of the Accelerator Energy Frontier

- a factor of 10 every 15 years

That trend will not continue

proton mass
The energy of Hadron colliders is limited by feasible size and magnet technology. Options:

- Get very large (~100 km circumference)
- More powerful magnets (requires new technology)
Future Circular Collider (FCC)

- Currently being discussed for ~2030s
- 80-100 km in circumference
- Niobium-3-Tin (Nb$_3$Sn) magnets.
- ~100 TeV center of mass energy
Leptons vs. Hadrons revisited

- Because 100% of the beam energy is available to the reaction, a lepton collider is competitive with a hadron collider of ~5-10 times the beam energy (depending on the physics).

- A lepton collider of >1 TeV/beam could compete with the discovery potential of the LHC
 - A lower energy lepton collider could be very useful for precision tests, but I’m talking about direct energy frontier discoveries.

- Unfortunately, building such a collider is VERY, VERY hard
 - Eventually, circular e^+e^- colliders will radiate away all of their energy each turn
 - LEP reached 100 GeV/beam with a 27 km circumference synchrotron!
 - Next e^+e^- collider will be linear
LEP was the limit of circular e^+e^- colliders

- Next step must be linear collider
- Proposed ILC 30 km long, 250 x 250 GeV e^+e^- (NOT energy frontier)

We don’t yet know whether that’s high enough energy to be interesting

- Need to wait for LHC results
- What if we need more?
“Compact” (ha ha) Linear Collider (CLIC)?

- Use low energy, high current electron beams to drive high energy accelerating structures

- Up to 1.5 x 1.5 TeV, but VERY, VERY hard
Muon colliders?

- Muons are pointlike, like electrons, but because they’re heavier, synchrotron radiation is much less of a problem.
- Unfortunately, muons are unstable, so you have to produce them, cool them, and collide them, before they decay.
Many advances have been made in exploiting the huge fields that are produced in plasma oscillations. Potential for accelerating gradients many orders of magnitude beyond RF cavities. Still a long way to go for a practical accelerator.
Some other important accelerators (past):

LEP (at CERN):
- 27 km in circumference
- e+e-
- Primarily at \(2E=M_Z\) (90 GeV)
- Pushed to \(E_{CM}=200\text{GeV}\)
- \(L=2\times10^{31}\)
- **Highest energy circular e+e- collider that will ever be built.**
- Tunnel now houses LHC

SLC (at SLAC):
- 2 km long LINAC accelerated electrons AND positrons on opposite phases.
- \(2E=M_Z\) (90 GeV)
- polarized
- \(L=3\times10^{30}\)
- **Proof of principle for linear collider**
B-Factories

- B-Factories collide e^+e^- at $E_{CM} = M(\Upsilon(4S))$.
- Asymmetric beam energy (moving center of mass) allows for time-dependent measurement of B-decays to study CP violation.

KEKB (Belle Experiment):
- Located at KEK (Japan)
- 8GeV e^- x 3.5 GeV e^+
- Peak luminosity $>1e34$

PEP-II (BaBar Experiment)
- Located at SLAC (USA)
- 9GeV e^- x 3.1 GeV e^+
- Peak luminosity $>1e34$
Located at Brookhaven:

- Can collide protons (at 28.1 GeV) and many types of ions up to Gold (at 11 GeV/amu).

- Luminosity: 2E26 for Gold

Goal: heavy ion physics, quark-gluon plasma, ??
Continuous Electron Beam Accelerator Facility (CEBAF)

- Locate at Jefferson Laboratory, Newport News, VA
- 6GeV e- at 200 uA continuous current
- Nuclear physics, precision spectroscopy, etc
Research Machines: Just the Tip of the Iceberg

Number of accelerators worldwide
~ 26,000

- 41%
- 44%
- 9%
- 1%
- 4%
- 1%

Annual growth is several percent

Sales >3.5 B$/yr
Value of treated good > 50 B$/yr **
Example: Spallation Neutron Source
(Oak Ridge, TN)

A 1 GeV Linac loads 1.5×10^{14} protons into a non-accelerating synchrotron ring.

These are fast extracted onto a Mercury target

Neutrons are used for biophysics, materials science, industry, etc...

This happens at 60 Hz -> 1.4 MW
Put circulating electron beam through an “undulator” to create synchrotron radiation (typically X-ray)

Many applications in biophysics, materials science, industry.

New proposed machines will use very short bunches to create coherent light.
Other uses of accelerators

- Radioisotope production
- Medical treatment
- Electron welding
- Food sterilization
- Catalyzed polymerization
- Even art...

In a “Lichtenberg figure”, a low energy electron linac is used to implant a layer of charge in a sheet of lucite. This charge can remain for weeks until it is discharged by a mechanical disruption.