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Consider the effect that one particle can have on subsequent particles through 
the interaction with the environment (beam pipe, RF cavities, etc) 
 
The fields of a single particle moving relativistically are 

B

E

~ 1
γ  

E ≈ q
2πε0r

δ z − ct( )

B ≈ q
2πε0cr

δ z − ct( )

If the particle is propagating through a beam pipe, we can express the 
charge and current densities as (homework) 

σ ≈ q
2πr

δ z − ct( )δ r( )

B ≈ qc
2πr

δ z − ct( )δ r( )
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By symmetry, we expect only 
 
 
components.  We also expect the solution to propagate along the beam pipe 
with the particle, so we transform to 

 

Bθ r, z,t( ) = eik z−ct( ) !Bθ r( )
−∞

∞

∫ dk

Er ,z r, z,t( ) = eik z−ct( ) !Er ,z r( )
−∞

∞

∫ dk

Ez ,Er ,   and Bθ

Recalling the appropriate Maxwell’s equations, we have 

 

1
r
∂ rEr( )
∂r

+
∂Ez

∂z
= ρ
ε0

− ∂Bθ

∂z
= 1
c2

∂Er

∂t
∂Er

∂z
−
∂Ez

∂r
= − ∂Bθ

∂t
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For any component of the field f, our transformation imply 

∂
∂t
f (r, z,t) = −ikc( ) f (r, z,t)

∂
∂z

f (r, z,t) = ik( ) f (r, z,t)

∂
∂r

f (r, z,t) = eik z−ct( ) r( )
−∞

∞

∫ dk

Move the integral completely outside, and this becomes 

  

1
r
∂ r !Er( )
∂r

+ ik !Ez =
ρ
ε0

= q
2πrε0

δ r( )

∂ !Er

∂r
+ 1
r
!Er + ik !Ez =

q
2πrε0

δ r( )

−ik !Bθ = − 1
c2

ikc( ) !Er

!Bθ =
1
c
!Er

ik !Er −
∂ !Ez

∂r
= ikc( ) !Bθ
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Combining the second and the third gives 

 

∂ !Ez

∂r
= 0

!Ez = A  (constant)

Plug this into the first equation, we have 

  

1
r
∂ r !Er( )
∂r

+ ikA = q
2πrε0

δ (r)

Multiply through by r and integrate 

  

r !Er +
1
2
ikAr2 = q

2πε0
!Er =

q
2πε0r

− 1
2
ikAr
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To solve for A, we look at the wall boundary, where  

 
!
j =σ

!
E

Now our equations become 

 

1
r
∂ r !Er( )
∂r

+ ik !Ez = 0

ik !Er −
∂ !Ez

∂r
= ikc( ) !Bθ

−ik !Bθ = − 1
c2

ikc( ) !Er + µ0 jr

!Bθ =
1
c
1+ i µ0cσ

k
⎛
⎝⎜

⎞
⎠⎟
!Er

ik !Er −
∂ !Ez

∂r
= 1
c
1+ i µ0cσ

k
⎛
⎝⎜

⎞
⎠⎟
!Er

!Er =
1

µ0cσ
∂ !Ez

∂r
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Plug this back into the first equation 

  

1
µ0cσ

1
r
∂
∂r

r ∂
!Ez

∂r
⎛
⎝⎜

⎞
⎠⎟
+ ik !Ez = 0

1
r
∂
∂r

r ∂
!Ez

∂r
⎛
⎝⎜

⎞
⎠⎟
+ i kσ
ε0c
!Ez = 0

 
µ0c =

1
ε0c

Evaluate at the wall of the beam pipe of radius b 

b  

r < b : !Ez = A (constant)

r ≥ b : !Ez = Ae
− iλ r−b( )

assume 

Assume im{λ}>>1/r, so 
 

1
r
∂
∂r

∂ !Ez

∂r
≈ ∂2

∂r2
!Ez

For r>b 

  
!Ez = Ae

iλ r−b( ) → ∂2

∂r2
!Ez = −λ 2 !Ez →λ 2 = ikσ

ε0c

To keep solution finite,  

 

Im(λ) > 0

λ =
k σ
ε0c

i + sign(k)
2

⎛
⎝⎜

⎞
⎠⎟try Skin depth δ = 1

Im λ( )
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To find Bθ, use 

  

!Bθ =
1
c
1+ iσ
ε0ck

⎛
⎝⎜

⎞
⎠⎟
!Ez

∂ !Bθ

∂r
= 1
c
1+ iσ
ε0ck

⎛
⎝⎜

⎞
⎠⎟
∂ !Ez

∂r

= 1
c
1+ iσ
ε0ck

⎛
⎝⎜

⎞
⎠⎟
−ik( )Aeiλ (r−b)

Integrate and rearrange some terms 

 
!Bθ = − 1

c
λ
k
+ k
λ

⎛
⎝⎜

⎞
⎠⎟ Ae

iλ (r−b)

Matching the solutions at r=b, we get 

  

!Bθ r=b
= − 1

c
λ
k
+ k
λ

⎛
⎝⎜

⎞
⎠⎟ A

= 1
c
1+ iσ

cε0k
⎛
⎝⎜

⎞
⎠⎟
!Er r=b

= 1
c
1+ iσ

cε0k
⎛
⎝⎜

⎞
⎠⎟

q
2πε0

− 1
2
ikAb

⎛
⎝⎜

⎞
⎠⎟



1/28/15 

5 

USPAS, Hampton, VA, Jan. 26-30, 2015 Wakefields and Impedance 9 

Solve for A, and after a bit of algebra, we get 

 

A = q

2πε0b
1
2
ikb − k

λ
− λ
k

⎡
⎣⎢

⎤
⎦⎥

≈ − qk
2πε0bλ

~ 1
kδ →

 very large

We now Fourier transform back into the lab frame to get 

 

Ez =
c
2πε0

q
b

1
z − ct 3/2

1−H z − ct( )⎡⎣ ⎤⎦

Er = − 3
4

c
2πε0

q
b

r
z − ct 5/2

1−H z − ct( )⎡⎣ ⎤⎦

Bθ =
1
c
Er

=0 ahead of particle 
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We are looking for a function which describes the effect that particles have 
on the subsequent particles.  We will look for the average fields created by 
particles in their wake. 

z

F

s ≡ ct − z

Trailing distance 

This will represent the average forces that a particle trailing the lead particle 
will experience a distance s behind the lead particle, due the wakefields it 
creates.  The total time derivative is thus zero 

df
dt

= ∂ f
∂t

+ ∂ f
∂z

dz
dt

= 0

∂ f
∂t

= −c ∂ f
∂z
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So, for example, the r component of                is  
 

!
∇×
!
B = − ∂

!
B
∂t

1
r
∂Ez

∂θ
− ∂Eθ

∂z
= − ∂Br

∂t
1
r
∂Ez

∂θ
= ∂
∂z

Eθ + cBr( )
convert to z derivative 

In terms of forces 
Fz = eEz

Fθ = eEθ + ecBr
= 0 + ecBr

1
r
∂Fz
∂θ

= ∂Fθ
∂z

Fθ = − ∂
∂s
Fθ

We can likewise show (homework) that 

ec ∂Bz
∂r

= ∂Fθ
∂z

= 1
r
∂Fz
∂θ

= − ∂Fθ
∂s

− ec
r
∂Bz
∂r

= ∂Fr
∂z

=
∂Fz
∂r

= − ∂Fr
∂s
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We can write a general solution as 

Fr = eQmmr
m−1 cos mθ( )Wm (s)

Fθ = −eQmmr
m−1 sin mθ( )Wm (s)

Fz = −eQmr
m cos mθ( ) ′Wm (s)

ecBz =Qmr
m sin mθ( ) ′Wm (s)

Verify for the r direction.  We want 
 
 
 
Check 

1
r
∂Fz
∂θ

= − ∂
∂s
Fθ

1
r
∂Fz
∂θ

= eQmr
m−1 sin mθ( ) ′Wm (s)

− ∂
∂s
Fθ = eQmr

m−1 sin mθ( ) ′Wm (s) ✔ 
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W(s) and W’(s) are called the wake functions. Often, W(s) is referred to as 
the “transverse wake function” and W’(s) as the “longitudinal wake 
function”. 

m =  "mode number"
Qm =  charge contributing to that mode (watch units!)

Assume a harmonic component of the beam structure 

λ → k = 2π
λ

Propagating form 
I = I0e

ik z−ct( ) = I0e
i kz−ωt( )

ω = c
k

=  angular frequency at fixed point

Consider the 0 mode in the longitudinal direction 

Fz = −qQ0 ′W0 s( ) = eEz
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So we can write the field induced by the charges in front of it as 

s

Ez z,t( ) dq

test point 

Ez z,t( ) = − dq z,t − ′s
c

⎛
⎝⎜

⎞
⎠⎟ ′W0 s( )∫

= − dq
dt∫ dt ′W0 s( )

= − I ds
c∫ ′W0 s( )

= − I z,t − ′s
c

⎛
⎝⎜

⎞
⎠⎟

0

∞

∫ ′W0 s( ) d ′s
c

= − I0e
i kz−ω t− ′s

c
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

0

∞

∫ ′W0 s( ) d ′s
c

= − I0e
i kz−ωt( )e

iω ′s
c

0

∞

∫ ′W0 s( ) d ′s
c

= −I0 z,t( ) e
iω ′s
c

0

∞

∫ ′W0 s( ) d ′s
c

appears to be a Fourier Transform 
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Recalling our discussion of the negative mass instability, we define an 
impedance 

V = EzL ≡ −I z,t( )Z ||
We can identify 

Z0
||

L
= 1
c

e
iω ′s

c ′W0 ′s( )
−∞

∞

∫ d ′s

V (z,t) = −I0 x,t( )Z0||
Generalize 

Zm
||

L
= 1
c

e
iω ′s

c

−∞

∞

∫ ′Wm ′s( )d ′s       units= Ω[ ]
L[ ]m

⎛

⎝⎜
⎞

⎠⎟

Zm
⊥

L
= 1
ic

e
iω ′s

c

−∞

∞

∫ Wm ′s( )d ′s

convention, because transverse fields 
tend to be out of phase 
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Calculating wakefields and impedances can be very difficult, even in simple 
geometries; however, we’ll see that if we know they exist, we can say 
something about their effects, and also about how to measure them. 


