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Off Momentum Particles

Off-Momentum Particles

® Our previous discussion implicitly assumed that all particles were at
the same momentum
Each quad has a constant focal length

There is a single nominal trajectory

@ In practice, this is never true. Particles will have a distribution
about the nominal momentum

@ We will characterize the behavior of off-momentum particles in the
following ways

“Dispersion” (D): the dependence of position on deviations from the nominal
momentum Ap
Ax(s) = D, () =
p
D has units of length ’
“Chromaticity” (n) : the change in the tune caused by the different focal lengths
for off-momentum particles

A . Av A
Av, = §x—p sometimes —* = §X—p
pO Ux pO
Path length changes (momentum compaction)
AL A
AL _ A
L P
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Treating off-momentum Particle Motion

® We have our original equations of motion B (

" ¥
X

~(Bp)
B

)

® Note that p is still the nominal orbit. The momentum is the (Bp) term. If
we leave (Bp) in the equation as the nominal value, then we must replace

(Bp) with (Bp)p/p,, so

2 2
x"=- 5, (po)(“x) +,07+2x=_ B (14 (1+x) +p+2x=(...)+ 5, Ap
Bol\p )\ "p) o (Bp) pl P (Bp) p,

el )

Where we have kept only the lowest term in Ap/p. If we also keep only the
lowest terms in B, then this term vanishes except in bend sectors, where

B
B B L ikex=Le
0

(Bo) (Bp) p

1+— 3

2
x) L pHx
P p
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® This is a second order differential inhomogeneous differential equation, so
the solution is x(S) — XOC(S) + x(/)S(S) + 5d(s)
x'(8) = x,C'(s) +x,8'(s) + Md'(s)
Where d(s) is the solution particular solution of the differential equation

d" + K =l
0

® We solve this piecewise, for K constant and find
K>0: d(s)=—(1-cosvKs)
PK
1
d'(s) =——sinVKs
oK
K<0: d(s)=-——(1-coshVKs)
PK

1

sinh VK s
oK

d'(s) =

® Recall 1 1
”+(—2+B;)x=>K=(—2+B;)
1Yy 1Yy
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Example; FODO Cell

® We look at our symmetric FODO cell, but assume that the drifts are bend
magnets

ARV
ERRE

2f

For a thin lens d~d’~0. For a pure bend magnet Y Ss=p
=L2: d(s)=L(I—COS\/?S) =p(1—cosi) st2—>l£=leL
P pK P 2p 2p 2
d'(s)= ! sinvKs = sin~> ~2 50

pVK p p

Leading to the transfer Matrix

Lo Lo r
11 oot L= i oot L 1l 00 1-272 2L(1+*] Zw(“ﬁ)
=_ﬁlog(1)? ?108(1)? -27_10__L7+L: Iz 9(1-5-#]
0 01 00 1 0 01 24 2f 4f 8
0 0 1
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Solving for Lattice Functions
® Solve for /p D
D'|=M| D’
1 1
® As you’ll solve in the homework
. L
sin & = =
2 2f 20
ﬂ 10XDispersion(m) y
2L|1+sin 15 N\ — — Beta(m) .
N 7
ﬁF,D = . \\ /
S u 10 \\\_\\ ’///
1 N T
6L 1:5sm§‘ . ~_ -7
DF,D = u
Siﬂz — 2 4s(m) 6 8 1
2
’
Upp = DF,D =0
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Momentum Compaction and Slip Factor

@ In general, particles with a high momentum will travel a longer path
length. We have

l+Al~l(l+26]

C(po)=fds ______ P
DA

C(p, +4p) =f(1+p)ds ! x=DJ
P Dy

D
f—ds

REPE P c
C T==
fu "l v
=a0 AT_AC Av_AC_Ap
® The slip factor is defined as the fractional rc¢ v ¢ p
change in the orbital period =a@_iﬂp
@ Note that p 7y
I 1\A
y<yr: m<0 higher energy particles take /ess time to go around = (2—2) 4
y >y, m>0 higher energy particles take more time to go around TP
y=y,: n=0 "transition" 577&
P
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Transition vy

® In homework, you showed that for a simple FODO CELL

ltsinﬂ 1:l in

E sin
ﬂmax min = 2L . > and Dmax min ~ 6L
’ sin u ’ u

s 2
sin
® If we assume they vary ~linearly between maxima, ther% for small p
2L 40 1> (B
(5)=2%; (D)= 2% g LB

2

@ It follows u u wp  p

ap=1fPas~Lipy~ L
CcJp P v
1

V===V
ac

@ This approximation generally works better than it should
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Chromaticity

® In general, momentum changes will lead to
a tune shift by changing the effective focal
lengths of the magnets

© As we are passing trough a magnet, we can —Ave _LEﬁ_l%E &
find the focal length as a4 fipe T P

Bl Bl p, 1(1_Al)
(Bo) (Bo), p 1,

Po

L B/
— = (s
f { (Bp)

@ But remember that our general equation of motion is

x"+(lz+ B (S))x= 0=x"+K(s)x

P’ (Bp)

® Clearly, a change in momentum will have the same effect on the entire
focusing term, so we can write in general

§= = fAOKED
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Review: Closed Form Solution

@®

Consider only periodic systems

X +K($)x=0; K(s+C)=K(s)< at the moment

® x(s)=Acos(\/Es+6)

assume w(s + C) = w(s), BUT
x(s) = Aw(s) cos(y(s) + ) s O e p(s)

®
X"+ Kx = AW = wip'> + Kw)cos(y +8)— 42w ¢’ + wip")siny +6)=0

®
2 ’ o N_O 2 (N 2 n_(Z |),_0:> |_i
wyY +wy = tlinly by v wwy +wy =\wy') = I/J—WZ
®
X= W(A] cosy + 4, sim/;) We’ll see
x' = (AW + 4wy )cosy + (4w — 4wy )siny f:;:rmUCh
=l 4w+ 4 k cosy +| AW Ak siny ?
=4 2, 2 1 W”__3+Kw=()
w
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Chromaticity in Terms of Lattice Functions

® On the last page, we derived two relationships when solving our Hill’s
equation k

w'(s)+ K(s)w(s) - w3k(s)

Multiply

' a 1 a
Vo) -Gt - ) Mo

I = KB’ -pa’'-a’ =1

® (We’re going to use that in a few lectures), but for now, divide by B to get

2
K/)’=1+—a+a’=&+a’=y+a'

B B

® So our general expression for chromaticity becomes

s=- e +a )b
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Chromaticity and Sextupoles
® we can write the field of a sextupole magnet as

B(x)==B"x" (often expressed bzxz)

1
2
@ If we put a sextupole in a dispersive region B,
then off momentum particles will see a
radient P=pgtAp
8 B(x=Ds)~B'DY S '
which is effectively like a positio‘rl;o A N X
dependent quadrupole, with a focal Nominal momentum Ap
length given by <x> =D —
LB M P
fejf (Bp ) Po
@® So we write down the tune-shiftﬁas
1 BB”  Ap_.Ap
Av=— =— LD =&+
4nﬁfcﬁ ar (Bp)  p, épo
_L ﬁB”
= (mp)”
@ Note, this is only valid when the motion due to mometum is large
compared to the particle spread (homework problem)
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