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Eric Prebys, FNAL 

�  Our previous discussion implicitly assumed that all particles were at 
the same momentum 
¡  Each quad has a constant focal length 

¡  There is a single nominal trajectory  
�  In practice, this is never true. Particles will have a distribution 

about the nominal momentum 
�  We will characterize the behavior of off-momentum particles in the 

following ways 
¡  “Dispersion” (D): the dependence of position on deviations from the nominal 

momentum 

D has units of length 

¡  “Chromaticity” (η) : the change in the tune caused by the different focal lengths 
for off-momentum particles 

¡  Path length changes (momentum compaction) 

USPAS, Hampton, VA, Jan 26-30, 2015 Off Momentum Particles 2 

0

)()(
p
psDsx x

Δ
=Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
=

ΔΔ
=Δ

00

 sometimes    
p
p

p
p

x
x

x
xx ξ

υ
υ

ξυ

xυ

p
p

L
L Δ
=

Δ
α



1/26/15 

2 

�  We have our original equations of motion 

 

�  Note that ρ is still the nominal orbit.  The momentum is the (Bρ) term.  If 
we leave (Bρ) in the equation as the nominal value, then we must replace 
(Bρ) with (Bρ)p/p0, so 

Where we have kept only the lowest term in Δp/p. If we also  keep only the 
lowest terms in B, then this term vanishes except in bend sectors, where 
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�  This is a second order differential inhomogeneous differential equation, so 
the solution is 

 

Where d(s) is the solution particular solution of the differential equation 

 
 

�  We solve this piecewise, for K constant and find 

 

�  Recall 
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�  We look at our symmetric FODO cell, but assume that the drifts are bend 
magnets 

For a thin lens d~d’~0.  For a pure bend magnet 

 
 

 

 
Leading to the transfer Matrix 
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�  Solve for  

�  As you’ll solve in the homework 
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�  In general, particles with a high momentum will travel a longer path 
length. We have 

�  The slip factor is defined as the fractional  
change in the orbital period 

�  Note that 
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�  In homework, you showed that for a simple FODO CELL 

�  If we assume they vary ~linearly between maxima, then for small µ 

�  It follows 

�  This approximation generally works better than it should 
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�  In general, momentum changes will lead to  
a tune shift by changing the effective focal  
lengths of the magnets 

�  As we are passing trough a magnet, we can  
find the focal length as 

�  But remember that our general equation of motion is 

�  Clearly, a change in momentum will have the same effect on the entire 
focusing term, so we can write in general 
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�  Our linear equations of motion are in the form of a “Hill’s Equation” 
 

 

�  If K is a constant >0, then                                     so try a solution of the form 

�  If we plug this into the equation, we get 

�  Coefficients must independently vanish, so the sin term gives 

�  If we re-express our general solution 
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�  On the last page, we derived two relationships when solving our Hill’s 
equation 

 

�  (We’re going to use that in a few lectures), but for now, divide by β to get 

�  So our general expression for chromaticity becomes 
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�  we can write the field of a sextupole magnet as 
 

�  If we put a sextupole in a dispersive region 
then off momentum particles will see a  
gradient 
 
which is effectively like a position 
dependent quadrupole, with a focal 
length given by 

�  So we write down the tune-shift as  

�  Note, this is only valid when the motion due to mometum is large 
compared to the particle spread (homework problem) 
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