

• Require that the lattice functions at both ends of the insertion match the regular lattice functions at those point

$$\begin{aligned}
& & = \begin{pmatrix} 1 & s_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{F} & 1 \end{pmatrix} \begin{pmatrix} 1 & s_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{F} & 1 \end{pmatrix} \begin{pmatrix} 1 & s_1 \\ 0 & 1 \end{pmatrix} \\
& = \begin{pmatrix} \cos \mu_I + \alpha_m \sin \mu_I & \beta_m \sin \mu_I \\ -\gamma_m \sin \mu_I & \cos \mu_I - \alpha_m \sin \mu_I \end{pmatrix}
\end{aligned}$$
Where μ_I is a free parameter
• After a bit of algebra

$$\begin{aligned}
& s_1 = \frac{\tan \frac{\mu_I}{2}}{\gamma}; s_2 = \frac{\alpha^2 \sin \mu_I}{\gamma}; F = -\frac{\alpha}{\gamma}
\end{aligned}$$
• Maximize s_2 with $\mu_I = \pi/2$, α max (which is why we locate it $L/2$ from quad)
• Works in both planes if $\alpha_x = -\alpha_y$ (true for simple FODD)

