

From Plugging back into the Equation

$$x = \sqrt{\beta}\xi$$

$$x' = \frac{1}{2} \frac{1}{\sqrt{\beta}} \beta'\xi + \beta^{1/2} \frac{d\xi}{d\phi} \frac{d\phi}{ds} = -\alpha \frac{1}{\sqrt{\beta}} \xi + \frac{1}{\sqrt{\sqrt{\beta}}} \dot{\xi}$$

$$= \frac{1}{2\sqrt{\beta}} (\dot{\xi} + \alpha v\xi)$$

$$x'' = \frac{\alpha}{\sqrt{\beta}^{3/2}} (\dot{\xi} + \alpha v\xi) + \frac{1}{\sqrt{\sqrt{\beta}}} (\frac{\ddot{\xi}}{\sqrt{\beta}} - \alpha' v\xi - \frac{\alpha \dot{\xi}}{\beta}) =$$

$$= \frac{\ddot{\xi} - v^2 (\alpha^2 \xi + \beta \alpha')\xi}{v^2 \beta^{3/2}}$$
So our differential equation becomes

$$x'' + K(s)x = \frac{\ddot{\xi} - v^2 (\alpha^2 + \beta \alpha')\xi}{v^2 \beta^{3/2}} + K(s)\beta^{1/2}\xi$$

$$= \frac{\ddot{\xi} - v^2 (\alpha^2 + \beta \alpha' - \beta^2 K)\xi}{v^2 \beta^{3/2}} = -\frac{\Delta B}{(B\rho)}$$

Magnet Type	n	k	Order 1-k	Resonant tunes v=m/(1-k)	Fractional Tune a Instability
Dipole	0	0	1	т	0,1
Quadrupole	1	1	0	none (tune shift)	-
	1	-1	2	m/2	0,1/2,1
Sextupole	2	2	1	т	0,1
	2	0	1	т	0,1
	2	-2	3	m/3	0,1/3,2/3,1
Octupole	3	3	2	m/2	0,1/2,1
	3	1	0	None	-
	3	-1	2	m/2	0,1/2,1
	3	-3	4	m/4	0,1/4,1/2,3/4,1

• So we're left with

$$\frac{dr^2}{d\phi} = \frac{1}{4\pi} r^3 (A_{m,2} \sin(3\theta - m\phi) + B_{m,2} \cos(3\theta - m\phi))$$
• The angular coordinate is given by

$$\frac{d\theta}{d\phi} = v + \frac{1}{\pi} r \cos^3 \theta (A_{m,2} \cos m\phi + B_{m,2} \sin m\phi)$$

$$= v + \frac{1}{8\pi} r (A_{m,2} \cos(3\theta - m\phi) - B_{m,2} \sin(3\theta - m\phi)) + (\text{terms we don't care about})$$
• We perform yet another transformation to the (rotating) coordinate system

$$\tilde{\theta} = \theta - \frac{m}{3} \phi \qquad \text{Note: in an unperturbed} \quad \tilde{\theta} = \left(v - \frac{m}{3}\right) \phi$$
• We then divide the two differentials to get the behavior of r^2 in this plane

$$\frac{d\tilde{\theta}}{d\phi} = \frac{dr^2}{d\tilde{\theta}} = \frac{\frac{dr^2}{d\phi}}{\frac{d\tilde{\theta}}{d\phi}} = \frac{\frac{1}{4\pi} r^3 (A_{m,2} \sin 3\tilde{\theta} + B_{m,2} \cos 3\tilde{\theta})}{\left(v - \frac{m}{3}\right) + \frac{1}{8\pi} r (A_{m,2} \cos 3\tilde{\theta} - B_{m,2} \sin 3\tilde{\theta})}$$

