
USPAS Accelerator Physics Final Exam
January 30, 2014

This copy of the final includes solutions, shown in red. Full derivations are given, along with example

sources for the necessary equations. The requested answers are boxed . The number of possible points
for each section of each problem is shown, with a total of 77 points being possible for the exam. Generally,
if an error in one calculation results in errors in subsequent calculations, full credit will be given for the
later calculations, provided their answers are consistent with the earlier (ie, incorrect) value.

General Guidelines

• This is an “open book” exam. You may use the text, lectures, homeworks, or any of the recommended
resources, including last year’s final. You are expected to work independently and to not seek out other
sources for the solutions.

• There are a total of four problems, which do not have equal weight.

• You may use anything that appeared in the lectures, textbook or assigned homework, without re-deriving it.

• Full or partial credit will only be given if your reasoning can be followed, so show your work. Please give
answers in the requested [units] when specified.

• The exam is due at 9AM tomorrow. Late exams will have their score reduced by 10%, with an additional
10% deducted for each additional hour.

• All problems are straightforward applications of what you have learned. There are no trick questions or
complex calculations. If you find yourself working hard, it’s a good sign you’re not doing the problem
correctly.

• If you think there’s a problem with the test, contact Eric at 630-336-1893 or prebys@fnal.gov. Any necessary
corrrections or clarifications will be sent to the email list and posted on the web page, so check both frequently!

The first three problems will be based on our standard symmetric FODO cell, which we have seen many times:

2F# $F#

L# L#

2F#

θ θ

s
where each cell contains focusing and defocusing quadrupoles of focal lengths (in the horizonal plane) of F and −F ,
respectively, spaced L apart. The entire length between the quadrupoles is taken up by identical bend dipoles, each
of which bends the beam by an angle θ. Positions s within the cell are measured from the center of the first focusing
quadrupole. You may use the thin lens approximation for the quadrupoles, assume each (half period) dipole is ≈ L
long, ignore any fringe field effects of the dipoles, and assume there are no horizontal dipole fields.
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Problem 1 (18 points total)

a. Write expressions for all Twiss parameters in the bend plane (αx,βx, and γx) at middle of the the first bend
(s = L/2). Express your answers in terms of (as appropriate) βmax, βmin, F , and L. (8 points)

We know from HW 2.3 and 2.4 that at the beginning of the cell α0

β0
γ0

 =

 0
βmax(

1
βmax

)


There are two equally valid ways to propagate these to s = L/2...

The first is to propagate them piecewise through the half lens and then half a drift, as shown in
Lecture 4, page 5. Going through the first half lens changes the intial values to

α1 = α0 + β0
1

f
=
βmax
2F

β1 = β0 = βmax

γ1 = γ0 ± 2
α0

f
+
β0
f2

=
1

βmax
+
βmax
4F 2

We then propate these through a drift of length L/2

α(s = L/2) = α1 − γ1s =
βmax
2F

−
(

1

βmax
+
βmax
4F 2

)
L

2

β(s = L/2) = β1 − 2α1s+ γ1s
2 = βmax −

βmax
2F

L+

(
1

βmax
+
βmax
4F 2

)
L2

4

γ(s = L/2) = γ1 =
1

βmax
+
βmax
4F 2

An alternative procedure is to calculate the transfer matrix from the beginning of the cell (half
lens+half drift)

M =

(
1 L

2
0 1

)(
1 0
− 1

2F 1

)
=

( (
1− L

4F

)
L
2

− 1
2F 1

)
We can then use the general transformation matrix (Lecture 4, page 4) α

β
γ

 =

 (m11m22 −m12m21) −m11m21 −m12m22

−2m11m12 m2
11 m2

12

−2m21m22 m2
21 m2

22

 α0

β0
γ0


Because α0 = 0, we can ignore the first column of the matrix, so this becomes α(s = L/2)

β(s = L/2)
γ(s = L/2)

 =

 (...)
(

1
2F −

L
8F 2

)
−L2

(...)
(
1− L

4F

)2 L2

4
(...) 1

4F 2 1


 0

βmax(
1

βmax

)


so we have

α(s = L/2) =

(
1

2F
− L

8F 2

)
βmax −

L

2βmax

β(s = L/2) =

(
1− L

4F

)2

βmax +
L2

4βmax

γ(s = L/2) =
βmax
4F 2

+
1

βmax

We see that with a slight algebraic rearrangement this is the same answer, as it must be.
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b. If I want the phase advance across one cell to be exactly 60◦, what value of F should I use, in terms of L?
Simplify your answer as much as possible. (2 points)

From HW 2.3, we have

sin
µ

2
=

L

2F
so

sin 30◦ = .5 =
L

2F
→ F = L

c. I build a ring out of Ncell of these identical FODO cells. What is the horizontal tune νx of the machine? (2
points)

The tune is related to the total phase advance, so

νx =
Ncellµ

2π
=
Ncell(60)

(360)
=

1

6
Ncell

d. Write an expression for the bend angle θ per (half cell) dipole in terms of Ncell. (2 points)

We have to make a complete circle, with each cell bending the beam by 2θ, so

Ncell × 2θ = 2π → θ =
2π

2Ncell
=

π

Ncell

e. Assuming that my ring contains small anomalous magnetic errors up to and including sextupole terms, what
are the values of the fractional tune I should avoid? (2 points)

We showed (Lecture 11, page 10) that quadrupoles can lead to resonances at the whole and half
integer tunes and that sextupoles can lead to resonances at third integer tunes, so we should avoid
tunes with a fractional component of

0,
1

3
,

1

2
,

2

3
, and 1

f. In light of this, and my 60◦ phase advance, write an expression or expressions for the allowed values of Ncell.
(2 points)

We showed above that the tune is given by

1

6
Ncell

so the fractional tune will be a multiple of 1/6. The only values that don’t fall on the resonances
in the previous part are 1/6 and 5/6, so the allowed values of Ncell are

Ncell = 6m+ 1 or 6m+ 5

where m is an integer
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Problem 2 (23 points total)

Now let’s put in some numbers. I design a ring to accelerate protons from kinetic energy of Kinj = 2GeV to
Kext = 20GeV. I make each FODO cell a total of 30m long. Assume I still want a phase advance of µ = 60◦ per
cell.

a. What are the values for (relativistic) β, momentum p[GeV/c], and beam rigidity (Bρ)[T-m] at injection and
extraction? (5 points)

We can build a table with the parameters we will need now and later. The requested values are
shown boxed.

Value Formula Injection Extraction

K [GeV] - 2 20
m [GeV/c2] - .935 .935
E [GeV] K +mc2 2.935 20.935

p [GeV/c]
√
E2 − (mc2)2/c 2.78 20.92

β pc/E .948 .999
γ E/(mc2) 3.13 22.32

(Bρ) [T-m] p[GeV]/.300 9.28 69.72

b. What value of focal length F [m] do I need? (2 points)

In 1(b), we showed that for a 60◦ phase advance, F = L. Since L is half the total length of the cell

F = L = 30/2 = 15m

c. If I use 2m long quadrupoles for the focusing magnets, what is the required gradient B′[T/m] when the beam
is at the highest energy? (2 points)

The relationship betwen the gradient and the focal length is given by (Lecture 3, page 3)

f =
(Bρ)

B′l

From the 20 GeV column above, we have (Bρ) = 69.72 T-m, so

B′ =
Bρ

Fl
=

(69.72)

(15)(2)
= 2.32T/m

d. I choose the most stable value of Ncell between 26 and 30. Based on your answer to 1(f), what is it? (2 points)

The only value which satisfies my criteria in 1(f) is

4 ∗ 6 + 5 = 29

e. What is the numerical value for the horizontal tune νx? (1 point)

From 1(c), we have

νx =
Ncell

6
=

29

6
= 4.833

f. Give numerical values for maximum values of the betatron function β[m] and and the dispersion D[m]. (4
points)

From HW 2.4 (S&E 3.12), we have

βmax = 2L
1 + sin µ

2

sinµ
= 2(15)

1 + sin 30◦

sin 60◦
= 2(15)

(1 + .5)√
3/2

= 51.96 m
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From HW 3.2, we have

Dmax = θL
1 + 1

2 sin µ
2

sin2 µ
2

We get the value of θ from 1(d) and write

Dmax =

(
π

Ncell

)
L

1 + 1
2 sin µ

2

sin2 µ
2

=
( π

29

)
(15)

1 + 1
2 (.5)

(.5)2
= 8.12 m

g. If my (95%) normalized beam emittance is ε95 = 10π-mm-mr, what is the maximum RMS beam size in x,
(σx) [mm] during injection, assuming for the moment that there is negligible momentum spread? (3 points)

The relationship between the normalize emittance and the RMS beam size is given by (Lecture 4,
pages 12-13)

σx =

√
ε95βmax

6βγ
=

√
(.000010)(51.96)

6(.948)(3.13)
= .0054 m = 5.4 mm

h. Let’s assume that at at injection, I want the RMS contribution to the beam size due to the momentum spread
at the point of maximum dispersion to be roughly the same as the contribution to the beam size due to the
betatron oscillations in the previous part. What’s the maximum allowable RMS momentum spread ∆p/p0 = δ
I can have? What does this correspond to in terms of energy distribution σE [MeV]? (4 points)

The RMS due to dispersion is given by (lecture 5, page 2)

σ = Dδ

So to satisfy this condition, we have

δ =
σx

Dmax
=

(.0054)

(8.12)
= .00066

From Lecture 2, page 6 (proven in HW 1.4), we have the relationship between the momentum spread
and the energy spread

∆p

p
= δ =

1

β2

∆E

E
→ σE = Eβ2δ = (2.938)(.948)2(.00066) = .0018 GeV = 1.8 MeV
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Problem 3 (22 points total)

Moving on to the longitudinal plane... Start with the synchrotron in the previous problem. Assume that we are
going to inject at a kinetic energy Kinj = 2GeV, accelerate at a linear rate to Kext = 20GeV, stop accelerating and
extract it; that is, assume we are not accelerating at the time beam is injected and extracted.

2F# $F#

L# L#

2F#

θ θ

s

Kinj

Kext

dEs

dt

Ks

t
a. If I design an RF system with a harmonic of h = 120, what are the injection and extraction frequencies finj

and fext[MHz]. (3 points)

The frequency of the RF system is given by

f = h
velocity

circumference
= h

βc

2NcellL

Taking these values from Problem 2, we have

finj = (120)
(.948)(3× 108)

2(29)
= 39.2× 106 Hz = 39.2 MHz

fext = (120)
(.999)(3× 108)

2(29)
= 41.3× 106 Hz = 41.3 MHz

b. What are the injection and extraction slip factors ηinj and ηext? (you may assume that γt ≈ νx) (2 points)

The slip factor is given by (Lecture 5, page 7)

η =

(
1

γ2t
− 1

γ2

)
We get the tune from 2(e) and γ from the kinematic factors in 1(a), so

ηinj =

(
1

(4.833)2
− 1

(3.13)2

)
= −.059

ηext =

(
1

(4.833)2
− 1

(22.32)2

)
= .040

c. I want to have at least a factor of 4 overhead in the bucket height ∆Eb over the RMS energy distribution of
the beam at injection; that is ∆Eb = 4σE . What value of the longitudinal beta function βL [s/eV] does my
RF system need to have if my energy spread just satisfies the condition specified at the end of problem 2? (3
points)

The bucket height is given by (Lecture 8, page 12)

∆Eb = 2

√
1−

(
π
2 − φs

)
tanφs

ωRFβL
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at injection, φs = 0 so

βL =
2

ωRF∆Eb
=

2

2πfRF (4σE)
=

2

2π(39.2× 106)(4)(1.8× 106)
= 1.16× 10−15 s/eV

d. If this is my value of βL, calculate the following at injection:

• The synchrotron tune νs (3 points)

The relationship between the tune and the longitudinal beta function is given by (Lecture 8,
page 8)

βL =
τ |η|

2πEsβ2νs
→ νs =

τ |η|
2πEsβ2βL

The period τ is given by

τ =
2NcellL

βc
=

2(29)(15)

(.948)(3× 108)
= 3.06× 10−6 s

so the synchrotron tune is

νs =
(3.06× 10−6)(.059)

2π(2.934× 109)(.948)2(1.16× 10−15)
= .0094

• The total required RF voltage V0 [MV] (3 points)

We can calculate this from the tune with (Lecture 8, page 8)

βL =

√
− τη

eV0ωRFEsβ2 cosφs
→ V0 = − τη

eβ2
L(2πfRF )Esβ2 cosφs

so for φs = 0, we have

V0 = − (3.06× 10−6)(−.059)

e(1.16× 10−15)2(2π)(39.2× 106)(2.94× 109)(.948)2
= 2.1× 105 V = .21 MV

e. I advance the accelerating phase to begin accelerating the beam. If I can set my synchronous phase φs in
5◦ increments (5◦, 10◦, 15◦, etc), what is the maximum value for φs[

◦] which will keep my bucket overhead
at least a factor of 3 during initial acceleration? This problem must be solved numerically. (Hint: you’ve
already solved the equation for the case of no acceleration. Isolate the dependence on φs and plug in increasing
values.) ( 5 points)

Our equation for the bucket height is

∆Eb = 2

√
1−

(
π
2 − φs

)
tanφs

ωRFβL

and the equation for βL is

βL =

√
− τη

eV0ωRFEsβ2 cosφs

so in terms of φs

∆Eb ∝
√(

1−
(π

2
− φs

)
tanφs

)
cosφs =

√
cosφs −

(π
2
− φs

)
sinφs

We know that at φs = 0, this gave a factor of 4 bucket overhead, and we want to keep a factor of 3
bucket overhead, so we want to find the largest value of φs for which√

cosφs −
(π

2
− φs

)
sinφs ≡ f(φs) >

3

4

We plug in values of φs in 5◦ increments
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φs f(φs)

0 1
5 .93
10 .86
15 .79
20 .72

So if we want to keep our bucket overhead at least a factor of 3, our maximum synchronous phase
angle is

φs = 15◦

Note that φs = 20◦ is actually closer, but the problem clearly states that we want at least a factor
of 3.

f. Given these values of V0 and φs, what is initial acceleration ramp dEs/dt[GeV/s]? (3 points)

The energy gained each turn will be
∆E = eV0 sinφs

so the rate of acceleration is

dE

dt
=
eV0 sinφs

τ
=
e(.21× 105)(sin 15◦)

(3.06× 10−6)
= 1.76× 1010 eV/s = 17.6 GeV/s
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Problem 4 (14 points total)

Consider a proton-proton collider with the following parameters:

• Beam energy: Eb (� mpc
2)

• Circumference: C

• Number of bunches: nb

• Number of protons ber bunch: Nb

• Normalized RMS emittance: εx = εy = εN .

• A single, low beta interaction region.

• Final focusing triplets are located a distance d away from the interaction point.

Assume that we are running at the maximum luminosity L0, limited by:

• A fixed normalized beam emittance εN .

• The beam-beam tune shift ξ.

• The aperture A of the final focusing quads (A ≡ diameter of the beam pipe)

• The minimum bunch spacing; that is, nb is a maximum.

In terms of the above parameters, answer the following questions:

a. Write an expression for the betatron function βA in the final focusing triplet, assuming I want at least a 6σ
clearance for the beam (assume βx ≈ βy at this point)? (5 points)

We have that the beam size is given by

σ =

√
βAεN
βγ

We want this to be 1/6 of the distance to the aperture, but remember A is a diameter. Since beam
size is measured from the center of the beam pipe, we must divide it by 2.

σ =
1

6

(
A

2

)
=

√
βAεN
βγ

→ βA =

(
A

12

)2
βγ

εN
≈
(
A

12

)2
1

εN

(
Eb
mc2

)
where we have used β ≈ 1 and γ = Eb/(mc

2).

b. What is the approximate minumum value for the beta function β∗ at the collision point? You may assume
β∗ � d. (Hint: How does the beta function behave as I move away from the minimum at the collision point?)
(5 points)

As we move away from the minimum beta, our beta increases as (Lecture 7 page 11)

β(s) = β∗ +
s2

β∗
→ βA = β∗ +

d2

β∗
≈ d2

β∗

where we have used the assumption that d� β∗. So we can write β∗ in terms of βA as

β∗ =
d2

βA
= d2εN

(
12

A

)2(
mc2

Eb

)

c. If I double the energy, but keep the circumference C the same (that is, I double the strength of my magnets),
by what factor will the maximum luminosity increase, assuming I can change β∗, but that I am subject to all
the same limitations itemized above. (4 points)
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Our expression for the tuneshift limited luminosity is (Lecture 14, page 10)

L = f
nbN

2
b γ

4πβ∗εN

Because of the γ factor in the numerator, simply doubling the energy and keeping everything else
the same will double the luminosity, but what else can we do? Since we are tuneshift limited, we
cannot increase (Nb/εN ). Since we said εN was fixed, this means Nb is also fixed. We also said nb
is a maximum. However, we see from previous problem that doubling the energy will allow us to
reduce β∗ by a factor of 2, while still maintaining my aperture clearance at the final focus. This
means that

Lmax(E = 2Eb) = f
nbN

2
b γ

4πβ∗εN
= f

nbN
2
b (2γ0)

4π(β∗0/2)εN
= 4L0
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